- RD-A178 43?7 non (rm M) FOUNDRTION TECHNOLO(W VOLUME 6

’ SOF TMARE REOU!REIIENTS FOR. . (U) INSTITUTE F
ANALYSES ALEXANDRIA VA J STANKOVICK ET AL. DEC

UNCLASSIFIED IDR-P-1893-VOL-6 IDA/HQ-86-30823

K

= EFF

H 33 m._uh....m

uhhu

] o
L

El L N
—— - S

.
-———— .

)
)
IDA PAPER P-1893
)
Ada* FOUNDATION TECHNOLOGY &
P Volume VI: Software Requirements for WIS Operating System Prototypes -
a3
N
Ry
)
Jack Stankovick, Task Force Chairman o
Clyde Roby, IDA Task Force Manager b
David Cheriton &
p Mike Liu -
John Salasin, Program Manager '}S\Z:
"x‘
.. i
’ ' w—ige
DTIC I
ELECTE N &
December 1986 MAR 3 1 1967 =]
\ ' Yy
E %
> il
as Prepared for ©
} B Office of the Under Secretary of Defense for Research and Engineering O pl
- %
 — [This doowment Wan Doen QO il
e ot pobke soleews ond subey M8 . o0 1§
L - distribution ts saliaiied, - R N
l [) /4 INSTITUTE FOR DEFENSE ANALYSES o
— 3 1801 N. Beauregard Street, Alexandria, Virginia 22311 s
NN
e
) *Ada is a registered trademark of the U.S. Government, Ada Joint Program Office.
10A Log Ne. HQ 08-30823 B3

% Taatad & Y p W DT, » TR P o Ca Ca il n (o v ", Co < , AT o o T P,
INNIBRT 0 GG S A AP 59505 S A 05 ISP 5105, 50 iy P DAY I AR 04 5 LAY

A5

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

A0-/3778 Y372

la REPORT SECURITY CLASSIFICATION
UNCLASSIFIED

1b. RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY

2b DECLASSIFICATION/DOWNGRADING SCHEDULE

3 DISTRIBUTION/AVAILABILITY OF REPORT
Approved for public release; distribution unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S)
P-1893 - Volume VI

§ MONITORING ORGANIZATION REPORT NUMBER(S)

Institute for Defense Analyses IDA

6a NAME OF PERFORMING ORGANIZATION | 6éb OFFICE SYMBOL

7a NAME OF MONITORING ORGANIZATION

6c ADDRESS (City, State, and Zip Code)

1801 N. Beauregard St.
Alexandria, VA 22311

7o ADDRESS (City, State, and Zip Code)

T-W5-208

Fa NaME OF FONDINGRPONSORING 8b OFFICE SYMBOL |9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (it applicable)
MDA 903 84 C 0031
WIS Joint Program Management Office WISIJPMO
8c ADDRESS (City, State, and Zip Code) TS, SOURCE OF FURDING NUMEBERT
7798 Old Springlield Road TASK 'WORR UNIT
Mclean, VA 22102 ELEMENT NO. [NO. NO. ACCESSION NO.

11 TITLE (Incilude Security Classification)

Ada Foundation Technology: Volume VI - Software Requirements for WIS Operating System Prototypes

2 PERSONAL AU'rHon(sD)
r J. Stankovick, C. Roby, D. Cheriton, M. Liu, A. Smith

B3s TYPE OF REPORT

ayY) NS PAGE COUNT |

Final FROM TO 1966 December 90
§6 SUPPLEMENTARY NOTATION
1 COSATI CODES B3 SUBJECT TERMS (Contiaue om reverse if mecessary and idemtify by block mumber)
‘ FIELD GROUP | SUR.GRQUP | World Wide Miltary Command and Control System (WWMCCS), WWMCCS Information System (WIS).

operating systems, automatic data processing (ADP), local area network (LAN), command, control,
and communications (C3), Ada programming language, CAIS, Inter-Process Communication (IPC).

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

The most important ingredient for a successful WIS is the design and implementation of a suitable distributed operating system. The WIS operating
system (OS) is a distributed operating system in the sense that it provides an abstraction of a single system across network connected multiple

machines. The design ol WIS OS presented is a well-balanced design that has significant potential for meeting the requirements of WIS. For example.
effective performance is achieved by providing a minimal kerne! that optimizes local area network (LAN) Inter-Process Communication (IPC), contains a
very {ast conlext switch and supports “lightweight” kemel tasks. Security is supported in the kemel by having clearly delineated address spaces, basic
mandatory access control and all communication controlied via the IPC mechanisn which can ensure that the proper security access is followed.

This volume is the sixth of a nine-volume set describing projects which are planned for prototype foundation technologies for WIS using the Ada
programming language. The other volumes include command language; software design, description, and analysis 100is; 1ext processing; database
management system; planning and optimization tools; graphics; and network protocols.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
@ UNCLASSIFIED/UNLIMITED [3 SAME AS RPT.[J DTIC USERS UNCLASSIFIED
222 NAME OF RESPONSIBLE INDIVIDUAL 226 TELEPHONE (Include Ares Code| 22¢ OFFICE SYMBOL

R R R R R ARt A T RN

DD FORM 1473, 84 MAR

83 APR edition may be used uwatil exhausted

SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete

Pt

]
ot
W

A

- ’J o]
X

- ® o oes - . v

|

L3
3
-’

-
Slans

IDA PAPER P-1893

Ada™ FOUNDATION TECHNOLOGY

Volume VI: Software Requirements for WIS Operating System Prototypes

Jack Stankovick, Task Force Chairman
Clyde Roby, IDA Task Force Manager
David Cheriton
Mike Liu
Alan Smith
John Salasin, Program Manager

' Accession For

i'rms GRARY . g
| PTIC TAB

December 1986 i Unramounced O

Jizstiftcation

| By
" Distritution/

; Avnailatrility Codes

e ——

| Aavail and/or
Dist | Speclal

)

DA | ‘

INSTITUTE FOR DEFENSE ANALYSES

Contract MDA 903 84 C 0031
Task T-WS5-206

TABLE OF CONTENTS
1.0 INTRODUCTIONcccotuiineniertsiusanencnstnsuenseeseecssiornesssnneosnsens 1
1.1 PUIPOSEuuiiiniiiiiiieiiniiiienctriinetatestreeeeratnireienrtireceesassesncesns 2
1.2 S0P ... cuiiiiiiiiiiiiiiiiiiistisesaeeitatairceettottetitestesettastttnrannans 3
1.3 Terms and Abbreviationscccoeeiuiiiiniiiiiiiininienieneneneenennennnnn, 4
14 REfETONCES ...uivieiiieieiniciieieiniriittietriitetttretsiraeeasnenrensnsnsnan 4
20 OVERVIEW OF WIS OPERATING SYSTEMMODEL......................7
3.0 WISOSKERNELcccccvuiutiiiiinriiiuiniiiieniirnieiieieniinseenenenss! 9
3.1 Basic Kemnel Modelocoimiiiiiiiniiiiiiiiiiriiaeecieeeceeenene 10
3.1.1 Kernel Process NOdes.........ccovuvenininniiiiiiiiiiiiiniinieiininensen. 10
3.1.2 MISCELlANEOUS.ccuvnenicniiniiiiiiiiiieiit s eeen e e aeaee 12
3.1.3 Distributed Operation...........ccoceveiieiiiiiiiiiienieiireniniinieninenen.. 12
3.14 SOCUMILY. .. evreinninrerenerninerereeetriecareneeisesaeseseesncnnennannnns 12
3.1.5 Fault Tolerance...........cocoovveiiiiiiiinninitieiiiiciiinuiiiiecrasecnann.. 13
3.2 Kemel Operationsococeiiiimiecnininiienieeiiiieiiiiiiiciieicisenens 14
3.2.1 Task and Process Management.cceveuvnienieniniinennenncencnne. 15
3.2.2 Exception Handling..........c.coeeveuviieniininininiiiininiiininienieenn. 16
3.23 Memory Management..........coeuveevnininrurncniecnriiieceiiicscenannes 17
3.24 Task GrOUPS.......ceueureurnncrnreuinnieneuiutrisetiieseniennssnanrnnens 17
3.2.5 Inter-Task COMMUNICAON. ...c.oovvrernrinieiniiiiiiininiieriersieeneaenes 17
3.2.6 Time FUNCHONS.ccieiuininiiririiiiitiiieiiinriienietiiieetitneraenanns 18
3.2.7 MiSCEIlANEOUS.vviviniaieinrienrniniiieitiectiiietiiiinencisnensersasnss 19
3.2.8 Device Management...........oceevuvrurniiieniucuiricnnenciirucastceerasases 19
3.3 Kemnel Implementationcccceevieiieriimeiiiiiiiniiniereinieinnenen.. 19
3.4 Inter-Kemel Protocolcoeeeiniiiiiiiiiiiiiiiiciiriiiciniieiiiiscenanens 20
35 Concluding Remarkscccceernirnrenriiieiiuiiiiiiiiieiiunieneeeeenns 21
4.0 Ada REMOTE PROCEDURE CALLccccviuiiiuiiniiiniiiiencinenen, 23
4.1 Presentation Protocolcceueeeiiienienieiininiiiiiiiiiiiciii e ecenees 23
4.2 R1TLY €T o T RN 24
43 Binding Facilityccccovuiiniiininniiniiiiiiiiiii 25
44 Transport MechaniSmc.ccoeeiieieiniininiiiiiiiiiiiiiinnniceneans 25
4.5 SUMMATY ...ouiiiiiiiiiiiieiiieieeenererratatntrtreeenettatesense. tesssasanene 25
50 CLUSTER GATEWAYSccoiviiiiiiiiiiiiiiiiiiiniiniininineaenennes 26
5.1 The Gateway Serverccviinieirriiiitiiiiiiiir e eeaens 26
52 Internetwork Protocolcccovnviviieiiiiniiiiiiiiiii e 27
53 Implementation Detailscccocviiiiiiiiiiiiiiiiiiiii 28
6.0 OS SUPPORT FOR DATABASEScocccuiiniuiiiiiiniireneeneernesncnnns 29
6.1 Basic Modelccciiniiiiiiiiiiirii i 29
6.2 File Management Operationsccceeevvniiiuiinieiiniiiiiinceiennanenes 29
6.3 File ACCESS ...ouinirniiiuiiniiiniiiiiiieiirieeiitierneieieiisaeeniseeieienes 30
6.4 77 < T e 30
6.5 Backup and RECOVETYcccoviiiiniiiniiniiiiiiiiiiicin e 31
6.6 File Replicationccviuiiuiiuniuniineieniiniiiiiiineeenns 32

e OO NANEAWN=O

Ll =

N »-

VOOOVOVOOVO WRWMXWNWE® NINNNNINNNN
5 WN -

WRNNNRN=O0 LWewlN=O

[]
©S9S
N-0O

— s gt
o000
wew

11.0
12.0

— e pus
Ll g
W N »—

wWwwn—o
[= X

b Bt s et Dme
(V-RV RV RV R VS NV

Ehmsﬁis.'- et SN NS S

TABLE OF CONTENTS (Continued)

gCONDARYSMAGEMANAGEMENTMODULE 34
ives and REQUITEIMENESccoiiiiinininnniueicenererineneeeneennns 34
Adz:necb .. 34
Basic MOdelcooiiiiiiiiiiiiii i ee e aa e e eaeanans 35
Flle MANaementcccooiiiiiiiiiiiiiiiiiiiiiiietctennieraanaaenananns 36
FIIE ACCESEcininniniiiniiiiiiiiiiieiiertenintaeeeeaseasnsnsensnnncensnenes 37
Network-based File Server......ccooiniiiiiiiiiiiiiiiiii i ciieeceeenenenenes 38
Naming and DIfeCIoryccociciniiiiiioiiiiniieenirneeneicecenennnnanss 38
BCRUIOM ...ivieieninininereneietecesesenrosareseesasnsesesssssnnnssssnannnnnenns 38
Concurrency Controlcccciiiiiiiiiiiiiiiiirreneaeteraceenenseanannses 39
Deadlock Controlc.coiiiriiiiiiiiiiiiiiieiireecerteneeraaeeenenens 39
Backup and RECOVETYooiniiiiiiiiiiiiiiiiiiiiiin e an o 40
TRANSACTION MANAGEMENTccooiiiiiiiicinieceneeaeeeanees 41
Client Transaction SOfIWEIEc.cciciiiiiiinintnenreseaneearasasarnenenns 41
Atomic Transaction Protocolccooiiniiiiiiiiiiiiiiniieiiiieeiinienanns 42
Transaction Manager Protocolooceiiniiiiiiiiiiniiinininennnn. 43
&mﬁ:ﬁ: ... 4
Deadlock T O 46
Server ISSULS ..o it rec e een e e e e e e ens] 47
SUITMMATY ...ttt ieeteet e raraeeenenetneeasarnrnenrnenanennns 47
PROGRAM EXECUTIONMODULEccoiiiiiiiiiieieneenes 48
ODJECUVEScoouiniiiiiniiniininiiniiiiiietiattteateacnrantenteaentasasensannns 48
Adherence Whe CAIS ... e rece e en 48
Local EIE .. .evenieie e iterearaaeeenearneanreaaseteeanaaetaarnraannn 5;
Global Resource Managementouuueueevainiinrenrerinrenrannns 5
The Statistics PACKRGEcocorniniiiniiiiiiiieie e reeeee e e enees 54

A Note on Deadlock Resolutionooiiiiiniiiiiiieiiinincennnnennnnnns 54
AUTHENTICATION SERVER ..ottt eee e eaeeans 55
Security Modeloooiiiiiiiiiii e 55
AUEROCEEIONocoiinitiieiiiiniiiieiieeneearereeeneaenrneenaaennnes 55
Key Distribution and Encrypted Communicationc.coceennen.e. S5
Security I ..eenieinere ettt it taeaeaaneraeaaaeeaanantneaaaanenesn 56
Unresolved Issuesccooiiiiiiiiiii e 56
PIPES: SYMMETRIC INTER PROCESS COMMUNICATIONS 57
PRINTERSERVERottt iree et eee e anenas 59
gyt - 40 T PPN 59
Printer Quene Managementooviiiiiiiiiiiii e 59
Printing Controlcoocoiiiiiiiiiii e 59
MULTI-WINDOWDISPLAY SYSTEM ... 60
Desi ?:vi:svzw Gy go
Display and AdalO ... 1
FleTypesooooiiiiiiii 62

Pixel Display Fileoooiiiiiiiiiiin e 62
TextDisplay FIesooeiin i 63

i

13.3.3
13.4
13.5
13.6
13.7
13.8
13.9

14.0

15.0
15.1
15.2
15.3
15.4
15.5
15.6
15.7
15.8
15.9
15.10
15.11

16.0
16.1
16.2
16.3
16.4
16.5
16.6
16.7

17.0

TABLE OF CONTENTS (Continued)

Structured Graphics Display Filesccccciiiiininnieniiniinnnnnnn. 64
Display File Projection Operationsccoccverecircnnenennnennennnes 64
Reverse Projection Supportccceiiviereieiiinieiiiiiiornnnenenenenenes 65
Input Handlingccccoviniiuiriiininniiiiiiiiiiiiiin e 56
Comparison with Other Approachesccccvevuviiiiiiiiinininennnns 66
Implementation Ideasccovininiiiiiiiiiiiiiiiiri e 67
SUMMATY ..ottt rcesettercensaesnraercrnnns 67
COMMAND LANGUAGE INTERFACEScceciviiiiiininnennnns 69
VODRIVERSciiiiuiiniraniietiuiiniinieniieematnesatessasensansensanrnssns. 70
Common Interface To AL /O Devicesccoceuiereniiiinenennninenenennn. 70
Driver DEpendenceoeiiuiuieiinriiuiniiriiirretietencreeaenseasnonenes 70
Drivers Requirementscccoevviiiiiiiiiiiiiiniiinnnn e 70
SIBNALS ...uieniiiiiiiiii i s e e 71
REad Checksccovviiiinirninsniiiiiiiiiiniirne et ce st e aneaeens 71
Reliability and Fault Redundancy Featuresccccoviiciniennninenn.. 71
Queuing VO ReqQuestscocvveveiiiiniiiiiiiiiiiiiiiiiniiinicinininneenn 71
I/O Driver Configurationcceevieniniuiiiiiuiiiiinininiincairansneen. 71
Mandatory Ada Requirements for Drivers...........cccooevviiiiinininiannnnn. 7
Device SubSHIUtONuiunieeentiiiiiiiinieiiiiiieiiceiraceeete e eeanees 71
Standardized Interfaces for DIvVeErscccoviveiiiiiiininineieninnnnnnene. 72
HARDWARE BASEccucuuiutiniintiniiieniaritnsetanensensnesnsansens. 73
COMMUNICAHON ..oeciuieiiiiiiiretasssratesesreternssssasetessssnsensnsansesnns 73
PrOCESSING ...oevvininiinniiiiiiiirrnteiiiiiriiieiinsireisteriteeeceasncanns 74
SIOTABE ..euvuiniiiiiiiinreetirneiirertiatesincncssresasesenenesassnessnseensasass 75
3 2 75
USET INTEITACEScoeiuiniiiiiiininieiieiniiiiiitiieeiecninriiotoecreenenecncens 75
Miscellaneous Peripheralscccooviiiiiiiiiiniiiiiiiiiiininenennnnen, 76
Prototype HArdwarecccoevinieieniiininiirineniceienininensneneesnnns 76
TIME SYNCHRONIZATION AGENTc.ccioiiiiiiiiiiiiininld 77

‘ LIST OF FIGURES]

|
! EIGURE PAGE
1 Layering of CAIS and Kemnel.............ccciviiiiiininiiinaicniciiennieeannn. 9

-grmc g
Cateme e w w =

L AN

L

< XA AA

-"~u.‘- AR W -\ $- WL TA SRR RS YA SO ERN ...‘.‘,._...‘....»._.
Bl LYY (AN, Y aY . o Uy ', w0 0

1.0 INTRODUCTION

The World Wide Military Command and Control System (WWMCCS) is an arrangement
of f;::sonncl, equipment (including automatic data processing (ADP) equipment and
software), communications, facilities, and procedures employed in planning, directing,
coordinating, and controlling the operational activities of U.S. Military forces.

The WWMCCS Information System (WIS) is responsible for the modernization of
WWMCCS ADP system capabilities, including information reporting systems, procedures,
databases and files, terminals and displays, communications (or communications
interfaces), and ADP hardware and software. The WIS environment is a complex one
consisting of many local area networks connected via long distance networks. The
networks will contain a wide variety or hardware and software and will continue to evolve
over many years.

The main functional requirements for WIS are presented in [JACK 84]. Briefly, the
functional requirements have been categorized into seven areas.

a. Threat identification and assessment functions involve identifying and
describing threats to U.S. interests.

b. Resource allocation capabilities must be provided at the national, theater, and
supporting levels.

c. Aggregate planning capabilities must provide improved capabilities for
developing suitable and feasible courses of action based on aggregated or
summary information.

d. Detailed planning capabilities must provide improved methods for designating
specific units and associated sustainment requirements in operating plans and
for detailing the sustainment requirements in supporting plans.

e. Capabilities must must be provided to determine readiness, for directing
mobilization, deployment and sustainment at the Joint Chiefs of Staff and
supported command levels, and for promulgating and reporting execution and
operation orders.

f. Monitoring capabilities of the system must provide the information needed to
relate political-military situations to national security objectives and, to the status
of intelligence, operations, logistics, manpower, and C3 situations.

g. Simulation and analysis capabilities must include improved versions of
deterministic models that are comparable to those contained in the WWMCCS.

In order to support these high level objectives, the WIS system software must provide an
efficient, extensible and reliable base upon which to build this functionality. To develop
such system software, several projects are planned for prototype foundation technologies
for WIS using the Ada programming language. The purpose for developing these
prototypes is to produce software components that:

a. Demonstrate the functionality required by WIS.

b. Use the Ada programming language to provide maximum possible portability,
reliability, and maintainability consistent with efficient operation.

R B N B e G 3 S o RN 5 S #00

TR (I

’l r]
a'y

an
AR

b]

AR

L
AN
L0

A

c. Display consistency with current and “in-progress” software standards.
Foundation areas in which prototypes will be developed include: ® k

a. Command Language

b. Software Design, Description, Analysis Tools ﬁ

c. Text Processing e ‘

d. Database Management System

¢. Operating Systems

f. Planning and Optimization Tools

g. Graphics
h. Network Protocol

1.1 Purpose

The most important ingredient for a successful WIS is the design and implementation of a
suitable distributed operating system. The WIS operating system (OS) is a distributed
operating system in the sense that it provides an abstraction of a single system across
network connected multiple machines. The design of WIS OS presented is a well-balanced
design that has significant potential for meeting the requirements of WIS. For example,
effective performance is achieved by providing a minimal kernel that optimizes local area
network (LAN) Inter-Process Communication (IPC), contains a very fast context switch
and supports "lightweight" kernel tasks. Security is supported in the kemnel by having
clearly delineated address spaces, basic mandatory access control and all communication
controlled via the IPC mechanism which can ensure that the proper security access is
followed.

Security is also supported outside the kernel by (1) "alias” processes which implement and
serve as safeguards for inter-cluster communications, and by (2) an authentication agent.
Fault tolerance is provided, in part, by the distributed nature of the system, as well as by
the fault tolerant distributed file system. Extensibility is enhanced because of the multi-
level and modular design of WIS OS as well as the use of the Ada programming language
and adherence to the structure and modularity of WIS OS can be explained by considering
three main levels together with the concept of an agent. An agent is a module that
implements one or more Ada packages to provide some service such as authentication,
logging and auditing, or secondary storage management. The three levels are:

a. Level 1 (Kemel)

b. Level 2 (Run-Time Support)
c. Level 3 (Application)
Level 1 (Kemal) provides an efficient base for transparent (network-wide) IPC, security,

and basic process, main memory and device support. It also provides basic support for the
CAIS and the concept of an object. Each type of object is viewed as an abstract data type.

ol
!
’1
"
o
N
A
-
|
X
Al
h]
b
h]
\
. g
3
p
B\
o
’
’
’

“~

B T £ R e S R A T e At A A S R S A S SRS

WIS OS objects include open files, atomic transactions, jobs, processes and virtual spaces.
The kernel provides operations for invoking operations on objects between processes, such
as found in the message passing scheme. It also provides operations for changing the
amount of valid memory associated with a task plus mapping portions of files in and out of
the address space. Other type of objects and operations on them can be defined at the other
levels. Further, language processors are free to define other types of objects either using
these basic WIS OS objects or independently.

Level 2 (Run-Time Support) comprises facilities that need not be implemented in the kernel
and are implemented in server processes that execute outside the kernel as well as by so-
called run-time procedures that execute in the address space of the invoker. The run-time
support level provides this necessary OS functionality that is not included in the kernel.
This level is extensible and initially includes the following agents:

a. Secondary Storage Memory Management

b. Transaction Manager

c. Program Execution Module

d. Authentication

e. Time Synchronization

f. Command Language Interfaces

g. IPC Support

h. Logging and Auditing

i. Cluster Gateways

j. Print Server

k. Muld-Window Server

1. Input/Output (I/O) Drivers

m. Name Server
Level 3 (Application) includes application programs an other agents which are not
necessary for run-time support. This includes the database management system (DBMS),
user application tasks, and non-essential OS utlities.
1.2 Scope
In this document the basic design, structure and interfaces of the WIS OS are provided.
Since the kemel is the single most critical element for a successful system, this entity is
described in the most detail. Also described in a lot of detail are the following run-time
support agents: Secondary Storage Memory Management, Program Execution Module,
Transaction Manager, Authentication Server, IPC Support, the Cluster Gateways, and the

Multi-Window Server. Areas included in this document but not discussed in detail include:
Time Synchronization, Command Language Interfaces, Print Server, and /O Drivers. The

Logging and Auditing Module and the Name Server are not discussed in this document. i:
AN
3 - :

N AN S N N T L LN LN

e . 4B A . & b ate A aid son 2 as o Sl ot it At dediing & i b aeaina DAl AL AL A L ol AL SALEALECE LS PALLELY Y

Most of the WIS OS will be implemented in the Ada programming language and adhere to.
Finally, this design is based on a variety of distnbuted system projects including V [CHER
84), Cronus (SCHA 85], Accent [RASH 81] and Cedar/Mesa.

o
1.3 Terms and Abbreviations
ADP Automatic Data Processing
ADT Abstract Data Type
APSE Ada Programming Support Environment
CAIS Common APSE Interface Set e
CL Command Language
DBMS Database Management System
DES Data Encryption Standard
DS Disk Server
FCFS First Come First Serve y
FS File Server ®
GKS Graphical Kemnal Svstem
o Input/Output
IP Internel Protocol
IPC Inter-Process Communication
JCS Joint Chief Staff
KPN Kemal Process Node ®
LAM Logging and Auditing Module
LAN Local Area Network
LRM Ada Language Reference Manual
MIP Millions of Instructions Per Second
oS WIS Operator System .
PEM Program Execution Module e
PROM Programmable Read-Only Memory .
ROM Read Only Memory
RPC Remote Procedure Call
SSMM Secondary Storage Management Module
TCB Trusted Computing Base
TCP Transmission Control Protocol ®
™ Transaction Manager
WIS WWMCCS Information System

WWMCCS World Wide Military Command and Control
1.4 REFERENCES

(1815A 83] U.S. Department of Defense, Reference Manual for the Ada Programming
Language, ANSUMIL-STD-1815A, February, 1983.

(BERN 81] Bernstein. P. A. and N. Goodman, Concurrency Control in Distnbuted
Database Systems, ACM Compuring Survey 13,2 (June 1981): 185-221.

j

|

[BIRR 83} Birrell, A.D. and B.J. Nelson, Communication Techniques for Remote r-l
Procedure Calls. In Proceedings of the Ninth Symposium on Operating s“

Svstems Principles (October, 1983). i
N

A Y

d

>

;

u

~

(BIRR 84] Bimrell. A. and B. Nelson, Implementing Remote Procedure Calls. ACM
Transactions on Computer Svstems 2. 1 (February, 1984).

[CAIS 85] U.S. Department of Defense, Military Standard Common APSE Interface
Set (CAIS), Proposed MIL-STD-CAIS, 1985.

[CHAN 82] Chandy, K.M. and J. Misra, A Distributed Algorithm for Detecting
Resource Deadlocks in Distributed Systems. In Proceedings of the ACM
SIGACT-SIGOPS Symposium on Principles of Distributed Computing
(August, 1982).

[CHER 84] Cheriton, D, The V Kemel: A Software Base for Distributed Systems.
) IEEE Software 1, 2 (April, 1984).

[CHOU 85] Choudhary, A., W. Kohler, J. Stankovic, and D. Towsley, A Distributed
Deadlock Detection and Resolution Algorithm Based on Priorities, UMASS
Technical Report, University of Massachusettes, Amherst, MA, 198S.

) [ELMA 85] Elmagarmid, A.K. and M.T. Liu, Fault-Tolerant Deadlock Detection in
Distributed Database Systems. In Digest of Papers, 15th Annual
International Symposium on Fault-Tolerant Computing (June, 1985): 240-
245.

[FRID 81] Fridrich, M. and W. Older, The FELIX File Server. In Proceedings of the
) ACM 8th Symposium on Operating System Principles (December 1981):
‘ 37-44.

[GRAY 79] Gray, J.N, Notes on Database Operating Systems. Operating Systems: An
Advanced Course, Springer-Verlag, New York, (1979): 393-481.

[HAER 83] Haerder, T. and A. Reuter, Principles of Transaction-Oriented Database
Recovery, ACM Computing Survey 15, 4 (December, 1983): 287-317.

[HO 82] Ho, Gary, and C.V. Ramamoorthy, Protocols for Deadlock Detection in
Distributed Database Systems, /EEE Transactions on Software Engineering
8, 6 (November, 1982)..

[JACK 84] Jackson, B. and J. Salasin, Preliminary Requirements for the Army
WWMCCS Information System (AWIS), Technical Report WP-
84W00035, Mitre Corporation, 1984.

[JAGA 82] Jagannathan, J.R., and R. Vasudevan, A Distributed Deadlock Detection
) and Resolution Scheme Performance Study. In Proceedings of the 3rd
International Conference on Distributed Computing Systems (1982).

[LAMP 78] Lamport, Leslie, Time, Clocks, and the Ordering of Events in a Distributed
System. Communications of the ACM 21, 7 (July 1978): 558-565.

L/

) [NCSC 83]) National Computer Security Center, Trusted Computer System Evaluation
Criteria, CSC-STD-001-83, 1983.

/

‘?’111 . "

(NELS 81] Nelson, B.J, Remote Procedure Call. PhD thesis, Carmegie-Mellon
University, 1981. Published as CMU Technical Report CMU-CS-81-119.

) [OBER 82] Obermarck, R, A Distributed Deadlock Detection Algorithm, ACM
Transactions on Databases 7, 2 (June, 1982).

o

R] o 2 T

>

ALY

%S

%

[RASH 81]

[SCHA 85}
[SINH 85]
[STAN 84a)
[STAN 84b]
[STAN 85]

[STUR 80]

[SVOB 84}

[THOM 79]
[WALK 83]

(WELL 84]

C 3 Y " a™ NS
LGOI, (XN 2

Rashid, R., and G. Robertson, Accent: A Communication Oriented
Network Operating System Kemel. In Proceedings of the Eighth
Symposium on Operating System Principles (Pacific Grove, CA, December
1981).

Schantz, R., R. Thomas, and G. Bono. The Architecture of the Cronus
Distributed Operating System, BBN Laboratories, 1985. Submitted for
publication, 1986.

Sinha, M.K., and N. Natarajan, A Priority Based Distributed Deadlock
Detection Algorithm, IEEE Transactions on Software Engineering SE-11, 1
(January, 198S).

Stankovic, J, Perspectives on Distributed Computer Systems, /[EEE
Transactions on Computers C-33 (December, 1984): 1102-1115.

Stankovic, J. and L. Sidhu, A Bidding Algorithm For Independent
Processes, Clusters of Processes and Distributed Groups. In Proceedings
of the 4th International Conference on Distributed Computing Systems
(May, 1984).

Stankovic, J, Stability and Distributed Scheduling Algorithms, /EEE
Transactions on Software Engineering , (October, 198S).

Sturgis, HE., J. G. Mitchell, and J. Israel, Issues in Design and Use of a
Distributed File System, ACM Operating Systems Review 14, 3(1980): 55-
69.

Svobodova, L, File Servers for Network-Based Distributed Systems.
ACM Computing Survey 16, 4(1984).

Thomas, R.W, A Majority Concensus Approach to Concurrency Control
for Multiple Copy Databases, ACM Transactions on Database Systems
(June, 1970): 180-209.

Walker, B.G., G. Popek, R. English, C. Kline, and G. Theil, The LOCUS
Distributed Operating System. In Proceedings of the ACM 9th Symposium
on Operaring System Principles (October, 1983): 49-70.

Wellings, A. J., D. Keeffe, and G. M. Tomlinson, A Problem with Ada
and Resource Allocation. Ada Lerters 3, 4 (January-February 1984).

X
N
~
~
i
s
S
N
)

o LT S S Y S S PRI o A S S I TP I} [T TS VR O 0 IS I A
R A N RO 20 N N R L IR TR G, b WAL SLBLL OO WML AL L RN AR AR
3 "t Laty e LA A RS

2.0 OVERVIEW OF WIS OPERATING SYSTEM MODEL

The WIS OS is a distributed operating system in the sense that it provides a abstraction of a
single system across network-connected multiple machines. When a host is running the
full WIS OS software, it provides the same program interface. Hosts running other
software are extended to provide the same generic network interface, i.e., they speak the
standard WIS OS protocols.

Conceptually, the system is structured as three operating system levels:

a. Virtual memory: The WIS OS provides virtual memory spaces for program
execution in (basically) the Von Neumann model. WIS OS determines the
binding of virtual addresses to data, which should ideally provide the late
binding and flexibility of so-called "mapped /O".

b. Objects: WIS OS objects include open files, atomic transactions, jobs,
processes and virtual spaces. Of course, language processors are free to define
other types of objects either using these basic WIS OS objects or independently.

c. User entity: The WIS OS provides support for users to “encode” useful
information and semantics in the system. In the simplest case, this is a fancy
way of describing symbolic names for files; the semantics of the symbolic name
for the file and the file contents are chosen by the user to correspond. In the
more general case, the user should be able to associate a symbolic name with
user-specified behavior according the desired semantics. One implementation
of this facility would be to use symbolically named "trigger daemons”, i.c.,
procedures invoked on reference to the symbolic name.

The primary focus of the WIS OS is to implement the object level. The virtual memory
level is subsumed to some degree by operations on virtual spaces as objects. Internal
management of virtual spaces is viewed primarily as the job of the language processors and
individnal programs. For example, the Ada compiler provides management of an address
space and implementation of objects local to one address space. The user entity level is
subsumed by a flexible naming and binding mechanism that allows flexible binding of
names to semantics. Treating the semantic actions as objects (either processes or procedure
invocations) and their bindings as objects allows the WIS OS to support this level but leave
its actual implementation to higher-level software.

Each type of object is viewed as an abstract data type (ADT). For example, an open file
viewed as a set of operations defined on it, similar to a stack (or other canonical examples
of ADT). Objects are organized into a hierarchy of abstract data types, primarily to provide
uniform interfaces to generic classes of objects and to define generic semantics at different
levels. For example, an open disk file, terminal line and 2 UNIX-like pipe are all special
cases of the generic open file. Thus, the generic operation READ should work with the
same generic semantics on each. However, SEEK,PIPE_WRITER_QUERY and
SET_ECHO might be operations specific to each of these three cases. Uniform interfaces
of this ilk are preferred for the same reasons as device-independent L/O is attractive, i.c.,
late and flexibility binding plus simpler programming model.

For simplicity, efficiency and security, the WIS OS object implementation is structured into
three levels:

a. Client stubs that provide a program-level abstraction that may extend the basic
interface to the object. For example, special query operations may be

implemented as run-time routines that invoke a more general query routine
provided by WIS OS.

b. The kemel provides a fundamental object called a process plus operations on
processes (including IPC communication). There may be other objects
provided by the kemel if necessary.

c. Objects other than processes are implemented at the process level to minimize
the size of the kemel. The kemnel provides operations for invoking operations
on objects between processes, such as a message-passing scheme.

The overall system structure includes these levels plus two others, namely application
programs plus “agents”, such as the user interface agent and electronic mail agent.

This layered model is an attempt to extract the consensus of how to build a system from a
variety of distributed systems projects, including V (Stanford), Cronus (BBN), Accent
(CMU) and Cedar/Mesa (Xerox PARC). In this model, we have used the term process
loosely in the sense that an extra level of indirection (such as ports) might be introduced

without significant change to the model. There are some issues to resolve as to the exact
nature of a process as well.

At AT\ o L L -~ P P) - -'.- -’ ‘-, ..“.., '..'. L A J P .\(e -\'..—:‘- "-‘--\v\- .'- ..- \-.'-._-. N -»\.\-..."\._\ ‘e
‘.'_l_:f:t:"-‘:{:fﬁ'lc.t\‘ﬁ-.’_i’.\'.';’.\gi\ﬁ';if.‘u'-i‘u\im-AA'AM&}L* P AN NI AL AT A S I WP Y A NI A NI AP N

3.0 WIS OS KERNAL

Section 3.0 presents a basic design for the WIS OS kemel. Significant departures from the
basic design must have proper justification.

The WIS OS kernel is a distributed kemel that implements an abstraction of memory,
processing and communication suitable for implementing CAIS-like process nodes as well
as external file and structural nodes. The kernel is designed to provide minimal facilities
required to meet security, fault-tolerance, performance and CAIS compatibility
requirements. Facilities that need not be implemented in the kernel are implemented in
server nodes that execute outside the kemel as well as by so-called run-time procedures that
execute in the address space of the invoker. For instance, the CAIS function
STANDARD_ERROR may be just a simple routine linked directly with the invoker,
returning a value stored in the address space of the invoker. Other functions, such as
SPAWN_PROCESS, use kemnel facilities to create a process node (address space) and
aflocate the needed resources with the required protections and security control.

Figure 1 illustrates the layering of CAIS routines on the kernel implementation with a
service module.

Ada Application Program | File Server Program

CAIS run-time routines |

WIS OS Kemel

|
|
|
|
|
|
|

machine 1 | | machine2 | ...
i }
|

| machine k
1 1
i

local network

Figure 1. Layering of CAIS

The kemnel logically extends across all the machines in a WIS OS cluster (although in
reality, a copy of the kernel (or some version) executes on each machine in the cluster.).
The basic kemel interface is augmented by CAIS run-time routines to provide CAIS
process node, structural node and file node operations. In the case of file nodes, there are
one or more file server programs that actually implement files. The file server programs
may execute on the same or different machines (or both) with transparent access to local
and remote file nodes provided by the kernel facilities plus the CAIS run-time routines. In
general, the kernel is viewed as an protected run-time library that implements routines and
data structures that cannot, for security, fault-tolerance or performance reasons, be
implemented in the CAIS run-time packages (that execute addressable to applications).

The kemel is intended for a hardware base of machines connected by a LAN, including
mainframe hosts, workstations and server machines. The kernel is also designed to be
reasonably portable over a large class of machines and local networks. The kernel in
conjunction with CAIS support is intended to provide an efficient, real-time base on which
to build sophisticated single-user systems, multi-user systems, network-accessed servers,
and dedicated real-time applications. These applications may be distributed over one or
more network nodes or workstations.

bl

YV Y¥S! |~

LA o)

- .- ——— BT EE TR EF I SN RV ESEFN IR i ™ T W TR AT AT YR TaRaT e Tae T -

The kernel interface is characterized by describing the basic objects it implements plus the
operations on these objects. These objects and operations are introduced in the following
section.

3.1 Basic Kernel Model

The kernel is designed to support the CAIS standard node model, including discretionary
and mandatory access control at B3 level. In addition, it supports the CAIS model (with
some extensions) over a distributed hardware including multiprocessors as well as
uniprocessors. Finally, it provides some basic support for fault-tolerance. The kemel is ®
also designed to be portable across different machine architectures and networks. There are
three basic classes of facilities provided by the kemel: memory, processing, and
communication.

3.1.1 Kemel Process Nodes

A kernel process node (KPN) is a basic form of process node (as in CAIS). AKPNis a
single address space with memory cells number O through N for some N. (We assume 32-
bit addresses for now.) The use of an address in one KPN is independent in general of the
use of the same address in another KPN. That is, two KPN's can be prevented from
sharing any data directly by memory access. In fact, for security, a KPN at one security
level may be unable to detect the existence of a KPN at another level. Operations are [
provided for changing the amount of valid memory associated with the KPN plus mapping
portions of file nodes in and out of the address space, namely mapped 1/O.

The WIS OS kemel implements KNP's or address spaces so that it can fully isolate
different Ada programs for security and reliability reasons. Separate address spaces are
used for numerous reasons: ®

a. Many machine architectures provide separate address spaces and this facility is
required for proper use of the machines.

b. Separate address spaces arise between programs running on separate machines.

¢. Separate address spaces provide low-level protection and security boundaries
that can be enforced by a small amount of software compared to the compiler,
for instance.

d. Separate address spaces simplify resource reclamation because all the memory
in an address space can be reclaimed when the program terminates. This ®
obviates the need for sophisticated, expensive and error-prone language-level
automatic memory reclamation, as done (for example) in Cedar, the Xerox
PARC programming environment.

A KPN contains one or more kemnel tasks (ktask) that represent threads of execution
control. These ktasks are used to implement Ada tasks. That is, cach Ada task in a ®
standard Ada program comresponds to a ktask unless it has been optimized into a procedure
call from its invoker (as some implementations attemnpt to do). Ktasks are distinguished
from Ada tasks because of differences arising between the kernel interface and the standard
Ada interface. All applications are assumed (and required) to use the Ada interface which 1s
then mapped to the kemnel interface by run-time trap routines. Each ktask is identified by a
cluster-wide unique ktask-id. This identifier is used by the Ada run-time to identify ktasks
corresponding to Ada tasks. (A suggested size for this identifier is 32 bits.) Note: Ada

10

VR \AANYIYY IAIAIIS

, .4‘

. - - EETS - . - . @ 8 e Tt T (Y " T e a v " Y " e
A T RO AR S A TR Tt L U Ut LR S RS S A A A T VA A AT e T AP
"‘.32‘}&332@2&;&4;&3.'-’RJJJLQ-'M-L;k(.fa BRI AT PO ITATNT NI 2NN RT RN MIAE W 3T 2 NIAF 2P WO

-

tasks require kernel support to provide for multiprocessor scheduling of tasks within one
Ada program.

The kemnel also supports groups of ktasks, with operations from allocating a ktask-group-
id, adding a ktask to a ktask-group, deleting a ktask from a ktask-group plus various query
operations. Identifiers for ktask groups are a subset of the kiask-id's. Recommended is
resert:rfing a bit in the ktask-id space that indicates whether a single ktask or ktask group is
identified.

) For economy of name spaces, a KPN does not have its own identifier. Instead, it is
identified in an operation by a ktask-id of a ktask in the KPN. The designation of the ktask
versus the KPN is clear from the definition of the operation.

The kemnel provides support for a per-ktask area by associating a ktask location and value
with each ktask. Whenever a ktask is activated, the kernel stores its per-ktask value in its

’ per-ktask location. As an expected use of this facility, each per-ktask value is a pointer to a
standard per-ktask data area within the task's stack space. This is provided as an aid to
Ada implementations of task, providing a pointer to a task-specific data that is set relevant
to the currently executing task and processor.

Ktasks can be dynamically created and destroyed. It is assigned its unique ktask-id on

, creation that is used subsequently to specify that ktask. Also, it is created as part of the
same KPN as its creator. A ktask is created in the initial state of awaiting-reply from its
creating task. (See next section on intertask communication.) This provides the creator
with the required control over the ktask to initialize its execution environment, including
stack, parameters, etc., before the ktask begins execution. An Ada implementation may
also create several such ktasks early in program execution to handle task references but

, only initiate execution when the task is "created” according to the execution of Ada program
in question.

Intertask communication is provided in two forms by the kernel. First, tasks may send,
receive, reply to, and forward messages. A ktask sends a message to another ktask-id
(which may be a ktask group) and suspends execution until the message is received by at
least one ktask and the ktask has replied to the message. If the specified ktask does not
exist, the message transaction terminates with an error indication (which the Ada run-time
can map into an exception). If the ktask-id represents a group, the sending ktask can
receive additional reply messages using a GET_REPLY kemel operation. A task sending a
message is said to be awaiting reply from the time it sends the message until the message is
received and replied to by the receiving task, or else, an error is retumed.

Second, a task can pass access to a single segment of memory in its KPN space to the
recipient of its message. The recipient task can access this segment using intertask copy
operations. The sender can specify read and/or write access to the sender. The presence of
a segment in a message and its associated location, size and access is specified by reserved
fields in the message.

The term message is used to indicate a basically untyped data array that is transferred from
sender to receiver. Similarly, message transaction is an exchange of request and reply
messages with zero or more intervening intertask copy operations to access segment data.
The Ada run-time may implement rendezvous in terms of message transactions. Similarly,
remote Ada procedure calls are implemented by sending the procedure parameters in a
message to a well-known task for that procedure, which creates a ktask to execute the
remotely executed procedure, allocating stack space, etc., and forwards the request

i)
A

i

11

200

(""

.........................

RS OIS A R R GRS S SR AL R
t(\‘:\' A AR TS AL SO 2SO AN

message serving as a procedure invocation to the newly created ktask. On return, the ktask
replies to the sending ktask and terminates or elise takes on another procedure invocation.

Impiementation note: there are performance advantages to using a fixed size, short
message of a length such that most procedure calls can fit in their parameters. For
example, 8 words or 32 bytes is reasonable. This allows the kernel to use a fixed size,
statically allocated message buffer for each task. Data larger than a message is passed as
part of the segment access mechanism using the intertask copy operations.

Supponfornaminginthekemelislimitedtokuskgoups. There are statically allocated
ktask group identifiers that may be used as logical addressing of certain classes of services
or facilities. A ktask requiring service in one such class can send to the associated ktask
group and locate a ktask willing and able to provide the required service. In the simplest
case, there is a ktask group corresponding to the remote procedure call binder service.

3.1.2 Miscellaneous

The kemel provides operations for reading the time, setting the time, delaying for a time
period, and unblocking a delaying task. Time is maintained in SYSTEM.CLICKS units,
which should be as fine-grain and accurate as practical.

For uniformity of communication (including device communication), devices are accessed
through the device pseudo-task implemented by the kemnel. Device operations are
performed by sending messages to the device server task, which again appear at standard
Ada procedure calls to application due to the interposition of run-time routines
that map between the application interface and the kemnel interface. The protocol used in
these messages is the same as used for all other 1/O activities in the system.

After the kemnel has completed its internal initialization, it creates an initial KNP and an
initial task on this KNP. The kemnel may have to make some assumptions about the format
of an Ada program module to start the first such KNP and its program.

3.1.3 Distributed Operation

All kemnel operations that use ktask-ids work uniformly independent of machine
boundaries. In particular, tasks on different machines may send and receive messages and
access segments as though all tasks were executing on the same machine. Each KPN
resides on exactly one machine at a time although the system may allow KPNs to migrate
from one machine to another. Restricting a KPN to one machine avoids the problem of
implementing shared.

3.1.4 Security

The kernel interface needs to provide access to and enforce the same multi-level secunity
model provided in the protocol. That is, it should be possible to enforce the same level of
security isolation between programs running in separate virtual spaces as between
programs running on separate machines. The following model is proposed.

Supporting the CAIS model, each process node is created using a specified security level.
Process nodes are divided into two classes, trusted and untrusted (correspondingly
dividing ktasks into trusted and untrusted ktasks.) All ktasks in a KPN are trusted or
untrusted depending on the status of the KPN. An untrusted process node cannot detect
to any significant degree the existence or state of an untrusted process node operating at a
different security level. (This is solving the confinement problem.) In particular, any

12

. SN N LR LN N LN S N e

TN AN AR AL

f

attempt to send to a ktask at a different security level is equivalent in behavior to sending to
a non-existent ktask. In contrast, trusted process nodes are allowed to pass information
between security levels, including creating and managing process nodes at different
security levels.

Trusted process nodes must run trusted software, as required for B3. Trusted process
nodes may only run on certain trusted hosts. Unsecured personal workstations run at a
single security level and only "see” other security levels by access negotiated indirectly
through trusted processes. Other hosts may be authorized for running different secunty
levels simultaneously but without having trusted processes. In this vein, file servers are
envisioned for each level of security as well as multiple security level file servers.
However, a workstation attempting access to another security .evel must go through a

trusted process to "write down" the required data and cannot deal directly with a multi-level
file server.

There needs to be some study of the cost of dealing with the confinement problem.
Clearly, though eliminating the implicit communication channels altogether is infeasible, it
is possible to interfere with such channels to minimize the effective data rate.

3.1.5 Fault Tolerance ‘

There are three aspects to kernel support for fault tolerance. First, the kernel allows
applications and server-level modules to provide mechanisms for detecting faults and taking
remedial action. In particular, the application level can supply an exception handler that
gains control of a task at the point it incurs a kernel-detected exception. The application is
then free to terminate the task, attempt repair and restart the task or whatever is appropriate.
As part of this support, the kernel ensures that no kemnel operation has any effect on an
application if an exception occurs in the midst of executing an "output” type of operation,
such as sending a message. In this case, the message is not sent if there is an exception as
part of sending the message. Similarly, the kemnel ensures that 2 "read” type of operation,
such as receiving a message, is repeatable if an exception occurs during the execution of the
operation. For instance, one is able to re-receive a message that was being received when
an exception was incurred. Thus, the intention is that the application will restart the
operation after correction. These two statements are general principle may not be fully true.
For instance, re-receiving a message from a task that has since terminated may be difficult
to implement and have the wrong semantics.

A second area of fault tolerance for the kemnel is dealing with hardware faults that affect its
operation. Hardware failures include processor, memory, bus, network interface and other
devices. On hard failure of any one of these components, there must be replacement or
alternative component available to make continuation feasible. The kemel should be
designed to use its operation from a point prior to the failure and continue with the
alternative. In the case of transient failures, a similar mechanism should work to simply
retry the operation with the same component. In many cases, a permanent component
failure may only be detected by several failing retries under the assumption of the problem
being transient failure.

Making the kernel operations atomic from a failure standpoint aids in kernel recovery from

errors. The kernel can abort an operation in progress and simply retry the operation again .
from the beginning.

The final area to consider is software faults. Three solutions are proposed to handling
these faults:

13

b A R A R A R AR RNR A SRR GRS C AR A

a. Fault-handlers: Retry operations in the case where the problem may be a
software timing error and not a hard coding error.

b. Data structure audit: Audit data structures for problems, both by periodic
| checks and as part of operations. Diagnosis and repair is attempted with some
‘ possibility of loss of a kernel operation or messages, if necessary.

‘ c. Replicated code: Refresh code from Programmable Read-Only Memory

‘ (PROM) or disk when corruption appears possible. Alternatively, the code
could be protected from corruption by memory protection or by being burned in
Read Only Memory (ROM).

The kemel fault handling must be analyzed for behavior under different faults to establish
the properties of the fault handlers with respect to correct operation. There is a danger that
fault handlers will simply delay recovery from a fault, i.e., a fast reboot is better than a
slow one. Second, there is a danger that a fault handler may not repair the damage
correctly and lead to the system continuing in an apparently error-free fashion which is in
fact more detrimental to overall system behavior than total kernel failure at the point of the
original fault.

3.2 Kemel Operations

The following description of operations is intended to be illustrative and is taken fairly
directly from the V kernel, which has heavily influenced this design. For simplicity, we
use simply "task” for ktask and assume it is understood that we are dealing at the kernel
interface level, not the Ada program level.

The operations provided by the kernel can be divided into three classes: kemnel traps,
kerneltask operations, and kemnel device operations. The most basic kernel operations,
including SEND, are implemented as kemel traps. These operations are invoked by
executing a trap or system call instruction which invokes the kernel. A number of
secondary operations are implemented by a pseudo-task running in the kemel, called the
kemneltask. Such operations are invoked by sending to the kerneltask's task-id. Finally,
operations on kernel-implemented devices are provided by a second pseudo-task, called the
kernel device server. Such operations are invoked by sending messages to the device
server's task-id, using the standard I/O protocol.

The kemel traps include:
COPY_FROM COPY TO FORWARD ° !
FORWARDER GET REPLY QUERY KERNEL N
RECEIVE ANY RECEIVE-SPECIFIC REPLY 3
SEND TASK_DELAY 7
oN
S
o)
3
ol
t4
4:‘
v
14 %
ol
N

P

- . - - - - LI GI N DR R RO LIS 7 AN U AT PR L PR ‘.“
m PO IR SO RTINS TS ST S N 0 N ISR N P RIS AN ST TIER 20 (U AN OO A AT VAR LA 2

The kemnel task operations include:

ADD_TO_GROUP BIND REGION
CREATE_HOST CREATE_JOB

CREATE PROCESS NODE CREATE TASK
DESTROY TASK GET PAGE SIZE

GET TIME INTERRUPT TASK
QUERY_PROCESS STATE QUERY_TASK_GROUP
QUERY _TASK STATE REMOVE FROM GROUP
SET_EXCEPTION HANDLER SET_PROCESS NODE_PRIORITY
SET_TASK_PRIORITY SET_TIME
TASK_CREATOR UNBIND REGION
VALID TASK ID WAKEUP

WRITE_TASK STATE

In the following descriptions, the active task or invoking task always refers to the task that
executed the kernel operation.

Some operations such as SET_PROCESS_NODE_PRIORITY and SET_TIME are

intended to be used only by "operating system" or management tasks and should not be

used by application programs. Again, these kernel operations are to be viewed as basic

"extended machine"” instructions to be used by the Ada run-time environment to implement

}hc standard Ada tasking model plus provide remote Ada procedure calls to access remote
acilities.

3.2.1 Task and Process Management

CREATE_PROCESS (parameters): Creates a new task with the specified
parameters and return its unique task identifier. Parameters should be chosen to
match those required by CAIS. Parameters may include priority, initial program
counter and initial stack pointer. Note: task must execute at same security level as
creator since it is contained in some process node.

The task is created awaiting reply from the invoking task an in the same process
node. The segment access is set up to provide read and write access to the entire
process space of the newly created task. The creator must reply to the newly
created task before it can execute.

CREATE_PROCESS_NODE (parameters): Creates a new process node with the
specified parameters as required for CAIS support including access control,
security level and possibility attributes. Other parameters to SPAWN_PROCESS
can be passed as parameters into the address space of the KPN since there is no
protection issue involved with these parameters. A parameter specified whether this
is a new job or not. There is not a separate kernel primitive for creating new jobs.
(It is not clear that the kernel even needs to make this distinction.) A first or root
task is created on the new process node and that task-id of the task is returned.

CREATE_PROCESS_NODE is similar to CREATE_TASK except the new task is
created on a new KPN. The new KPN initially has a null address space. It is
intended that the creator of the team initializes the memory address space and root
task state using BIND_REGION, MOVE_TO, and WRITE-TASK_STATE.

DESTROY_TASK (TASKID): Destroys the specified task and all tasks that it
created. When a task is destroyed, it stops executing, its task-id becomes invalid,
and all tasks blocked on it become unblocked (eventually). When all the tasks in a
process node are destroyed, the process node is automatically deleted.

QUERY_PROCESS_STATE (TASKID, ACCESS_TO_PROCESS STATE):
Copies the state of the process node associated with the specified task into the
structure that can be accessed (i.e., pointed to) by

ACCESS_TO_PROCESS_ST. ATE. The state mcludcs whether fields are required
as part of the process implementation and include START TIME, FINISH TIME
MACHINE_TIME, etc., as required by the CAIS specification.

QUERY_TASK_STATE (TASKID, ACCESS_TO_TASK_STATE): Copies the
state of the specified task into the structure that can be accessed (i.c., pointed to) by
ACCESS_TO_TASK_STATE. This includes registers, state, etc.. The message
buffer is only available if TASKID is the invoking task or is awaiting reply from the
invoking task. If not, the appropriate fields in the structure are zeroed.

SET_PROCESS_NODE_PRIORITY (TASKID, PRIORITY): Sets the priority of
the process node associated with TASKID to the specified priority and return the
previous priority. Each task effectively runs with the absolute scheduling priority
of its process node plus the priority specified when the task was created.
SET_PROCESS_PRIORITY changes he absolute scheduling priority of each task
on the process by modifying the process priority. This operation is intendefor
implementing macro-level scheduling and may eventually be restricted in use to
trusted or privileged process nodes. Note: changing priority is intended as the
means for implementing SUSPEND_PROCESS and RESUME_PROCESS in
CAIS. There should be at least one low level of priority at which a process is
guaranteed not to execute.

SET TASK_PRIORITY (TASKID, PRIORITY): Sets the task's execution
pnonty

TASK_CREATOR (TASKID): Returns the task id of the task. that created
TASKID.

VALID_TASKID (TASKID): Returns TRUE if TASKID is a valid task identifier;
otherwise returns FALSE.

WRITE_TASK_STATE (TASKID, STATE): Copies the specified task state record
into the kernel state of the task specified by TASKID. The specified task must be
the invoking task or awaiting reply from the invoking task. The kernel checks that
the new state cannot compromise the integnity or security of the kernel.

3.2.2 Exception Handling

The kemel provides minimal exception handling. When a task incurs an exception, it is
logically forwarded to the exception-handler task associated with this task. At that point,
the exception-handler task has full control of the task and may diagnosis the problem, take
remedial action, terminate the task, or continue the task. There are two basic operations in
the kemel, SET_EXCEPTION_HANDLER and INTERRUPT_TASK:

INTERRUPT _TASK (TASKID, parameters): Causes the specified task to suspend
execution by sending a message to the invoking task with the specified parameters.

16

ERRAA | FLELGHAN

Yt

_ﬂ.‘.:

L p ‘{"'

WXRAl [N

SET_EXCEPTION_HANDLER (TASKID, EXCEPT _HANDLER): Sets the

exception handler for the specified task to be the task specified by

} E)%CEP’ I_HANDLER. A task inherits the exception handler of its creator by
default.

3.2.3 Memory Management

BIND REGION (TASKID, ADDR, SIZE, FILE HANDLE, OFFSET, MODE):
’ Binds the addresses in the region from ADDR to ADDR+SIZE to the file node

specified by FILE_HANDLE starting at OFFSET. Any previously bound pages
are unbound.

GET_PAGE_SIZE: Returns the number of bytes in a page.

) UNBIND REGION (TASKID, ADDR, SIZE): Removes the bindings established
by BIND_REGION for the pages in the specified range. (References in the
address range now generate address exceptions.)

3.2.4 Task Groups

ADD_TO_GROUP (TASK_GROUPID, TASKID): Adds the task to the specified
task group.

QUERY_TASK_GROUP (TASK_GROUPID, TASK_INFO): Returns
information about the specified task group, including number of members, etc.

REMOVE_FROM_GROUP (TASK_GROUPID, TASKID): Removes the task
from the specified task group.

3.2.5 Inter-Task Communication

COPY_FROM (SRC_TASKID, DEST, SRC, COUNT): Copies COUNT bytes
from the memory segment starting at SRC in the process space of SRC_TASKID to
the segment starting at DEST in the invoking task's space. The SRC_ TASKID task
must be awaiting reply from the invoking task and must have provided read access

to the segment of memory in its space using the message format convention
described for SEND.

ﬁ COPY_TO (DEST_TASKID, DEST, SRC, COUNT): Copies COUNT bytes from
the segment starting at SRC in the invoking task's process node space to the

segment starting at DEST in the process node space of the DEST _TASKID task,

and return the standard system reply code OK. The DEST TASKID task must be
awaiting reply from the invoking ask and must have provided write access to the

l segment of memory in its space using the message format conventions described

under SEND.

FORWARD (MSG, FROM_TASKID, TO_TASKID): Forwards the message
pointed to by MSG to the task specified by TO_TASKID as though it had been
sent by the task FROM_TASKID. The task specified by FROM_TASKID must be
awaiting reply from the invoking task. The effect of this operation is the same as if
FROM_TASKID had sent directly to TO_TASKID, except that the invoking task is
noted as the forwarder of the message. Note that FORWARD does not block.

17

FORWARDER (TASKID): Returns the task id that forwarded the last message

received from TASKID, providing TASKID is still awaiting reply from the

invoking task. If the message was not forwarded, TASKID is returned. If P
TASKclcli) does not exist or is not awaiting reply from the invoking task, O is

return

GET_REPLY (MSG, TIMEOUT): Retumns the next reply message returned in

response to the last SEND operation assuming one is queued or is returned within

the next timeout clicks. GET_REPLY is only of use when the message was sent to P
a task group, thus providing for multiple reply messages.

RECEIVE_ANY (MSG, SEGMENT, SEGMENT _SIZE): Suspends the invoking

task until a message is available from a sending task, returning the task-id of this

task, and placing the message in the array (pointed to by) MSG. At most the first

SEGMENT _SIZE bytes of the segment included with the message is placed in the e
buffer starting at SEGMENT. The actual number of bytes in the portion of the

segment received is returned in SEGMENT _SIZE.

RECEIVE_SPECTFIC (MSG, TASKID, SEGMENT, SEGMENT _SIZE): The

same as for RECEIVE_ANY except that a message is only accepted from the

specified task. If the specified task does not exist or is subsequently destroyed, ®
RECEIVE_SPECIFIC returns an error status.

REPLY (MSG, TASKID, SRC, DEST, BYTES): Returns the specified reply

message and segment to the task specified by TASKID. The specified task must be

awaiting reply from the invoking task. the specified reply message and segment to .
the task specified by TASKID and return TASKID. ®

SEND (MSG, REPLY_MSG, TASKID, SEGMENT, SEGSIZE, ACCESS,

TIMEOUT): Sends the message in MSG to the specified task providing it with the

specified ACCESS to the SEGMENT and blocking the invoking task until the

message is both received and replied to. If SEND completes the process

successfully, it returns the task-id of the task that replied to the message. The task- ®
id returned differs from that specified in the call if the message is forwarded by the

receiver to another task that in turn replies to it. If the send fails (for instance,

because the intended receiver does not exist), SEND returns the task-id of the task

the message was last forwarded to (the task-id it was sent to, if it was never

forwarded). Access to segment is read/or write. The TIMEOUT parameter

specifies the amount of time the sender will wait before the message is received)
without canceling the message transaction. This is to support conditional and timed

entry calls.

Several "optimizations” are possible. In the V kemel, the REPLY_MSG and MSG

pointers were made the same for economy. Similarly, the segment specification

was encoded in the message since this information was generally of interest to the -
recipient as well as the kernel (which has to enforce the segment access). Finally,

-

an initial portion of the segment is transmitted to the recipient when read access is o

provided, as suggested when RECEIVE_ANY or RECEIVE_SPECIFIC specify an X
segment buffer.

3.2.6 Time Functions @

GET_TIME (TIME, CLICKS): Returns the current time in seconds and clicks. f;j

o

18 :;

M|

o8

I

-.1

’

- “~ b - -

Vo Y '.'-4.‘-' ‘-;.‘- e e QS . e o ..‘.'.‘. ".'.
k‘lit‘:-&:;yi_nxiﬁ.';‘.‘;\‘L):’:-‘.‘i&‘} A‘?:A‘,...._..l\..,. b el > By

SET_TIME (SECONDS, CLICKS): Sets the kemel-mamtamed time to that
specified by SECONDS and CLICKS.

TASK_DELAY (SECONDS, CLICKS): Suspends the execution of the invoking
task for the specified number of seconds and clicks where a click is one
microsecond. (The accuracy of TASK DELAY reflects the machine clock
resolution.) The task may be unblocked by WAKEUP.

‘ WAKEUP (TASKID): Unblocks the specified task if it is delaying using
TASK_DELAY.

-~

3.2.7 Miscellaneous

QUERY_KERNEL (TASKID, GROUP_SELECT, REPLY): Queries the kernel
P on the host where task TASKID is resident. The GROUP_SELECT field specifies
what information is to be returned in the REPLY message. The available group
selection codes are MACHINE_CONFIG, to return information about the
processor configuration, PERIPHERAL_CONFIG, to return a list of peripherals
available on the machine, KERNEL_CONFIG, to return the kernel's configuration
parameters, MEMORY _STATS, to return mcmory usage statistics, and
y KERNEL_STATS, to return other kernel statistics. These codes, and the

corresponding structures that may be returned, are defined in the standard interface
file.

Again, these operations are intended to be suggestive of the types of kernel operations
expected. The actual kernel operations, their parameters and semantics, should be modified
P to support the CAIS environment. Moreover, none of these kernel operations should be

directly visible to Ada programmers in general. They instead deal with standard CAIS
pnmm\ées (although various extensions, such as for dealing with task groups may be
required)

3.2.8 Device Management

Basic device support is provided by the kernel. For instance, the kemnel should provide
basic raw access to disk, network interfaces, tape, console, etc. All /O operations are to
be performed across address space boundaries using the SEND operation to communicate
in the remote procedure call paradigm. Ada I/O operations are implemented as stub
routines that generate messages to tasks on process nodes implementing various /'O

‘ services. Keeping with this model, the kernel provides a set of device pseudo tasks that
implement the devices. At the kemel interface, device /O is performed by sending
messages to these device tasks, the same as /O to the file servers, printers and other /O
services. That is, the same message protocol should be used for all Ada /O procedures.

3.3 Kemel Implementation

The WIS OS kemel should be a distributed kernel in that a single-system image should be
provided to programs across all machines in one interconnected domain running the WIS
OS kemel. Machines running a guest-level implementation of the WIS OS protocols may
appear externally to be part of this machine-transparent domain, but do not generally appear
that way to programs running in the machine.

r The objective of this project is to design the WIS OS kernel interface and implement a
prototype kernel that provides this interface as well as implements the WIS OS kemnel

19

Yy €, q AR S LR AT PR S'_.- --,.- .-.“..-,.- ..-._.-.'.".'. ----------- '~_~ L -
A S A Y N A R Y R N NI IO N A N ST AL I T SO N AT SNSRI

protocol. This prototype should be developed to provide an indication of the performance
of the protocol and the cost of implementing the interface. It would also provide
experience with structuring the kernel for portability.

The kernel could be developed for 2 medium-performance workstation, such as
the , Apollo or Perq. Based on sizes of similar kernels such as the V kemel, Accent
kemel, etc., we would expect the following:

a. The kemel would be about 20,000 lines of source code.

b. The kemnel could be developed almost entirely in the Ada language if a suitable
compiler is available.

¢. The kemel would take about two man-years to produce.

Recommended is that an extra three man-years to be allocated to experimenting with the ®
performance, reliability and security aspects of the kemel. Some of this effort might be \
used to support use of the kernel and respond to problems found in the course of
performing the other tasks as in the following sections. A suggested structure to the kernel
1s as follows. The performance-critical) inter-task communication operations should be
implemented as highly optimized traps into the appropriate routines. (For instance, one
operation per trap location for machines providing trap vectors.) The remaining operations ®
for general process, task, memory and device management should be implemente by
internal-to-kernel tasks that are invoked (across the kemnel interface) by the SEND
operation. This design means that implementing these operations on remote objects (on
another machine running the kernel) is relatively simple. That is, assuming the SEND
operation is implemented transparently between machines, a DESTROY TASK operation
(for example) is implemented by sending the message to the remote machine on which the
specified task is executing.

Each task is represented by a small data record linked to its associated process node
descriptor. The process node descriptor contains the address space information and other
per-process information. A separate data structure is required for task group membership
plus the usual data structures for virtual memory management and device management.
However, the space cost per task should be very low, dominated by the task descnptor
space required for processor state.

The kemel should execute on each machine participating in the distributed kemnel
abstraction. Kernel operations on remote processes are realized by communication between
kernels using an inter-kernel protocol. Aspects of this protocol are described in the
following sections.

3.4 Inter-Kemel Protocol

IPC is a key performance issue in systems of this design. With attention to detail, the cost
of moving data (copying) becomes the dominant cost for all but small amounts of data.
The intertask communication be efficient enough such that it can be used by diskless
workstations for network file access and (demand) paging.

The WIS OS kemel protocol or protocols provides transport-level communication between
tasks running the WIS OS kemel, or possibly "appearing” to run the WIS OS kemel. For
instance, existing systems may be extended to "speak” this protocol, and thereby partcipate
as part of WIS OS.

20

» .
T Y T e e e A e, e e e _,~.__\’-.‘__,_.\‘\.,\._x',s.,\..\'.'-.."

WA N AT A A W N

P

-

The kernel protocol must have the following important attributes:

a. Efficiency: Provide efficient transaction or request-response style interaction
between machines, as is typical on a local network cluster of machines.

b. Reliability: Provide a range of reliability with extensive error reporting facility.
The kernel protocol should report why communication failed rather than just
that it did fail.

c. Security: Provide for secure (encrypted) communication of data both with Data
Encryption Standard (DES) style encryption and public-key encryption
systems.

d. Real-time: Provide for real-time communication, i.c., where getting the most
recent information is more important than getting all information. As part of
this, there should be a priority associated with communication as well.

Some of the requirements closely overlap that provided by Transmission Control
Protocol/Intemnel Protocol (TCP)/(IP). There is also currently an Internet Task Force (End-
to-End Services) that is proposing to develop a new "transaction-based" protocol for the
Internet that would be even more appropriate, probably similar to RDP.

In general, the inter kernel protocol seems best as based directly on [P datagrams using a
general request-response paradigm, as used in the V kernel and various remote procedure
call protocols. Basically, a request consists of one or more datagram packets. A response
is one or more datagram packets sent back to the sender of the request. The response is
viewed as an acknowledge that the request was received as well as a reply to the request.
Requests are retransmitted some number of times until acknowledged. Various "response-
pending" packets are used as well. Finally, the intertask copy operations can be
implemented as multiple packet requests and responses as well. The V kernel protocol as
well as the various so-called "blast” protocols used at MIT serve.as reasonable models for
this aspect of the protocol.

Communication with a group of tasks should map to multicast datagrams that are logically
addressed to all hosts involved. A proposal is being developed in DARPA for a multicast
extension to [P, suitable for supporting this form of communication within the standard
DoD Internet.

3.5 Concluding Remarks

The kernel is designed to provide a small, high-performance base on which to provide
standard Ada tasking and CAIS process nodes. The kemnel as a separate entity from the
Ada runtime is required to support multiple address spaces, represented as process nodes.
The small size of the kernel is intended to allow it to run on all machines, although
possibly in different configurations. With the layering of Ada and CAIS run-time routines
on top of the kernel, the higher levels of software have a network transparent base on
which to build higher level services, such as file and database service, printer service,
multi-window systems and user interfaces, not to mention WIS applications.

The Ada run-time layer is provided by the Ada development team. Some aspects of the
mapping onto this kernel are described in Section 4.0. This includes protocols for use with
the message primitives as well as how naming is done.

21

W o F T W e, BREAP A IR S A T P A PO NN A
505 7 S S I A W O 5 SR AR A G AR L 7 S SAS

LS

N T

DR

T AT 1]

=
o

-

-

7%

o
.~
\J
“

Moot

...........

It appears not feasible to provide a small, efficient distributed kemnel as proposed here that

meets the security and fault-tolerance constraints of WIS and operates over a wide area

network. WIS is assumed to be segmented into clusters that represent domains of relative

trust, high data rate connectivity and common administration. The kernel provides &
relatively transparent operation within a cluster. Interaction between clusters is provided by

cluster gateways that serve as translators, isolators and locators between the local cluster

and the outside world. This is described further in Section 5.0.

RSl R AARNA, FEINXAN/ | |

22

bt " e S
AN A

oy 7, T e VaT. Ty . AR .. . N A '.'..-.‘f.--. --_-.-
YR P NN RS AT A SR N NN R NN PP R SN FETEIC TN 2 I

4.0 ADA REMOTE PROCEDURE CALL

The WIS Ada remote procedure call facility provides the ability to invoke Ada procedures
on a remote machine (more or less) as though they were being invoked locally. This
supports a key goal of the WIS OS, namely allowing applications to be written in the Ada
language and be relatively independent of the distributed hardware base on which the
system runs. For example, a new database facility is defined in terms of its Ada procedural
interface. Clients of this facility invoke these procedures, oblivious to whether the facility
is running locally or remotely on a separate machine in the cluster, or possibly another
cluster. Similarly, a module can be written with considerable independence of the clients or
invokers of the module being local or remote.

There are four components to the Ada remote procedure call facility:

a. Presentation Protocol: Specifies how various types of parameters are to be
represented in packets or messages.

b. Stub generator: Generates stub routines that map the call onto a packet or
message at the client end plus map a packet onto a particular procedure, stack
and activation record at the server (invokee) end.

c. Binder: Matches calls up with the call definitions.
d. Transport mechanism: Delivers the bits reliably between the call and the callee.

The transport level facility is provided by the kernel. That is, procedure arguments and
return values are stored in messages and transported between the caller and the callee using
the message-passing primitives. For further details on the kernel, the reader is referred to
Section 3.0.

4.1 Presentation Protocol
There are three major design considerations in a presentation protocol:

a. Is there one network standard representation for data of a given type or several,
depending on machine, etc.?

b. Is data explicitly typed in a message or is it implicit based on the "type" of the
message? This might be regarded more as a granularity question.

c. How extensive is the protocol in covering different types? For example, does it
handle arbitrary structured types, user-defined types, etc., or does it only define
representations for basic types like integer, pointer, etc.?

Providing complete representation for all Ada types is very ambitious. Therefore, the goal
is a modest protocol that handles the common types efficiently.

A presentation protocol should be developed that specifies a representation for the base data
types in the Ada language, including integers, unsigned numbers, floating point numbers
and access types (pointers). Required is that this protocol follow the Xerox Courier
protocol to the closest degree possible. Deviations and extensions to Courier in the Ada
presentation protocol should be clearly justified.

23

-y-

&

Y
‘s

b 4

h ok 2u P]
F A XY
TS| |

-
P4
)

1K

ST
SRk

o’
I..;‘

>
L

Al

P
Sy

Lol WEVEITE LT W T TR T T R T VT Y T TS T YWY VT VEYY YW Y TE TR W t g2 gk b A Lo R A M ¥
- v~ T v

4.2 Stub Generator

The stub generator is a program that “compiles” Ada module interfaces and generates stub
routines for both the client (invoker) and server (module) ends, using the kemnel facilities
to communicate between these ends when separated by a network or calling across virtual
address boundaries. The stub generator takes as input an Ada module interface. The client
stubs are a set of Ada routines generated by the stub generator that perform several
functions.

First, the client take their parameters and pack them into a message according to the &
presentation protocol. The message includes a unique identifier for the procedure to be
invoked, probably structured as (module, procedure). At minimum, a stub should handle
all non-reference parameters plus reference parameters that refer to an object that itself does
not contain references. Extensions to handle more complex data types are invited.

However, the stub generator should recognize and report any procedural interfaces that it
cannot handle correctly. L

Second, the stub routine uses the binding facilities and the kernel facilities to locate the
server machine and stub, and communicate with the server end. The kernel communication
facilities suspend the task during the communication and then cause it to resume when the
remote procedure call returns.

Finally, on return the stub routine unpackages the retumn values and places them in the
appropriate locations for a normal procedural return. Of course, the stub must handle the
propagation of Ada exception signals from the remote call back to the caller.

The stub generator should provide the same mapping to messages for the same procedure
interface specifications so as to support uniform protocols. For example, the ®
PRINTER.READ, FILEREAD, PIPE.READ and TERMINAL.READ operations should
have the same parameters, as required for a uniform /O interface.

The server stub performs a complementary set of facilities. First, as part of initialization it
registers the availability of the module with thebinding facility. This allows the module to
be located by remote calls. ®

Second, the server stub accepts incoming packets for the module, allocates the call to a
process or task, translates the packet contents into the appropriate activation record, and
gets the allocated task to invoke the appropriate procedure. The allocated task is set up as a
renresentative of the remote invoking task; that is, its associated account and permissions
appear as that of the remote invoking task. |

Finally, on procedure return (or exception), the local task takes the return values, places
them in a message, and sends it back to the invoker.

The server end could be structured as a manager process that receives all incoming Remote '
Procedure Call (RPC) packets. It employs a set of helper processes that actually execute ®
the procedure calls. When a RPC message comes in, 1t allocates a helper process to
execute it and passes the message and pointer to the server stub to the helper process.

The helper process then invokes the server stub which simply retracts the parameters from

the message and invokes the procedure, plus handling the retun as above. There may be a

queue of helper processes for this purpose, reducing the overhead of creating a new ®
process on each call. This structure may be replicated in each address space providing

ANl
-

s '~ I‘

A L
IKAAST)~

24

remote invocation so that the binding of helper processes to server stubs is straight
forward, i.e. the server stubs are bound in with the module they serve.

4.3 Binding Facility

The binding facility connects procedure invocations with their remote server stubs. This
binding can take place at a number of different times ranging from system initialization to
program initialization to first invocation to each invocation. The binding can be performed
with the aid of a central name service or by a decentralized facility, such as that provided
by the kernel group communication facility.

A binding facility should be provided that gives efficient, robust binding. The followir.g
basic design is recommended: the stub generator allocates a unique identifier for each
module and each external procedure within the module. Stub routines for the client and
server stubs are generated knowing this unique identification. When a module that
provides remote invocation is initialized, it registers the unique identifiers of its exported
procedures with the local remote procedure call manager. Each client application/address
space maintains a table of bindings from procedures to specific remote procedure call
managers. A client stub uses this table to map to the appropriate remote procedure call
manager when sending off the invocation message. If the entry for that particular
procedure is invalid, the stub routine uses the kernel multicast facility to query all the
remote procedure call managers to determine who implements this procedure, again using
ihe unique identifiers. Assuming it gets a response, it stores the RPC manager identifier in
the table and sends to the manager to invoke the desired procedure. This design
corresponds to binding on first use except that rebinding should be supported on failure,
i.e., the original RPC manager failed.

Also recommended is a simple facility be provided so that the programmer can initiate the
binding at program initialization as well. Assuming a table of remote stubs is generated and
bound into the program from the stub generator, this only requires a procedure that can be
called, which systematically goes through the stub table and sets up bindings for each stub.
This is more efficient and also provides earlier detection of binding failures. One can
determine in advance that a given module is not available, rather than waiting until half way
through program execution.

4.4 Transport Mechanism
TBD

4.5 Summary

The key goal is to provide a clean, efficient remote procedure call mechanism for the Ada

program. The ideal of complete transparent procedure calls seems unattainable in the shor
term.

Of primary importance is the concentration on providing the subset of capabilities of
maximum utility that can demonstrate the feasibility of this approach. In this vein, the RPC
system should allow for programmer-generated stub routines to be mixed with the
automatically generated stubs. Thic allows extensions by applications beyond the RPC
facilities available at the time plus !.and optimization of performance critical routines as
appropriate.

The work of Nelson and Birrell [NELS 81) [BIRR 84] [BIRR 83] on remote procedure
calls should be studied as should the Cournier remote procedure call mechanism. Other
relevant reports are appearing in the computer system research literature.

25

..............

vy aa]

R
| -y

4
o 44
BV g

" & e

4
SR

(v ST e e g ag a2 g ad a8 aa st e in i ol ao o PRl B gl il ath PR AL a8 o082t o

5.0 CLUSTER GATEWAYS

Each cluster has one or more gateway machines that connect the cluster to wide area
networks, and therefore to other clusters. Unlike conventonal datagram gateways that
simply provide packet routing (and little else), cluster gateways are required to take an
active part in insulating the cluster from outside considerations. These considerations
include differences in communication protocols and characteristics, security and reliability
assumptions. That is, the gateway really does have to function as a “gate” that can close
selectively, not just a mindless pipe to the outside.

For efficiency within a cluster, network communication is optimized for local network
characteristics or logical local networks. A logical local network is one or more physical
local networks connected by bridges such that the existence of multiple physical network is
(more or less) transparent to the hosts connected to the network. For communication
outside the cluster, the gateway implements a local alias task that represents the remote task
with which communication is to take place. Similarly, communication coming into a local
network is handled as originating from an alias task in the gateway. This basic model has
several benefits.

First, communication with tasks outside of the cluster appears the same as communication
with a local task because of the local alias task. Thus, there is no need to compromise local
communication to make wide area communication possible. Consequently, local cluster
communication is very efficient

Second, inter-cluster communication cannot occur without the gateways agreeing to create
the requisite alias tasks. Because the creation of alias tasks can be handled at a fairly high
level, this provides a reasonable security control over inter-cluster communication.

Finally, because the gateway is explicitly involved in translating between local
communication and wide area communication, it can serve to isolate the local network from
failures and errors, as well as contain local cluster failures.

A cluster gateway is structured as a half-gateway in the sense that it translates from the
local network protocol to an internetwork protocol (in the truest sense of the term). That is,
the internetwork protocol is primarily used between networks as opposed to covering a
collection of networks. On the local network side, the gateway appears as a server that
provides access to extra-cluster facilities. On the internetwork side, the gateway appears
stmilarly with the addition of explicit data transfer primitives and a more general data packet
interface. The next section describes the server interface.

S.1 The Gateway Server
The gateway server supports the following basic operations:

CREATE _LOCAL_ ALIAS (CLUSTER, REMOTE TASKID): Creates a local
alias task for the specified remote task and return a task-id for this local alias.

Subsequently, a local task can communicate with this remote task by sending to the
local alias.

CREATE REMOTE_ALIAS (LOCAL TASKID, CLUSTER): Creates an alias for
the local task on the specified remote cluster. Tasks on the remote cluster are now
able to communicate with this local task.

3

Y

[aed
(=}
)
R Iy

NPT NI ERTS, ¥ I8
ls{\{\ SN AN NN NN NN A

ADD_TO_LOCAL_GROUP (TASK_GROUPID, LOCAL_ALIAS): Adds the
local alias task to the specified task group. Messages sent to this group are
subsequently forwarded to the remote task corresponding to this local alias.

REMOVE _FROM_LOCAL_GROUP (TASK_GROUPID, LOCAL_ALIAS):
Removes the local alias task from the specified task group.

ADD TO_REMOTE_GROUP (TASK_GROUPID, CLUSTER,
REMOTE_ALIAS): Adds the remote alias to the taskgroup in the specified cluster.
This is equivalent to ADD_TO _LOCAL_GROUP except the request is sent to a
remote gateway and permission checking is more vigorous.

DEFINE_INTERCLUSTER_SERVICE (NAME, RANGE, SERVICE, TASKID):
Define a new intercluster service with the specified name as part of the intercluster
directory. This service is then accessible by name from any cluster within the
specified range of clusters.

UNDEFINE_INTERCLUSTER_SERVICE (NAME): The specified service is
removed from the gateway intercluster directory.

The basic operation envisioned is as follows. Various services within a cluster register
themselves with a cluster gateway in the intercluster directory. This directory is logically
one directory but in reality is a distributed database. The registration includes security
level, scope of definition (which clusters may access this service), a description of the
service, and the tasks or task groups that implement the service.

The name space of the gateway cluster directory is added to the name space of file and other
objects of the local cluster. A client in the local cluster can query the intercluster directory
for services that are available. It can then access such a service by creating a local alias for
the task or task group representing this service and then proceed to use this service as
though it is local. In the course of creating the local alias and setting up a remote alias for
the local client task, the gateways would perform the required authentication on the client
tasks involved.

In some cases, the service may need to pass client request servicing off onto other
secondary tasks in the same process node (or a different process node). In this case, when
dealing with a remote client task, the server uses CREATE_REMOTE_ALIAS to create a
remote alias for this secondary task. The server then returns this secondary alias id and
directs the client to use this for former communication. For example, a file server may
have a single task for file name lookup and file open. However, subordinate tasks may
handle all subsequent /O requests.

In this fashion, clients can access remote services with no complication over accessing local
services. Moreover, gateways are provided with a firm basis for implementing access
control, namely their control of alias tasks.

5.2 Intermnetwork Protocol

The internetwork protocol used between cluster gateways or half gateways comprises
several layers. First, there is a transport layer for delivery data between cluster gateways.
The selection for transport layer depends highly on the interconnection between gateway
halfs. For instance, two gateway halfs may be connected by a shared memory board as a
communi-ation channel. In this case, a simple transport protocol suffices. More

27

b AR R A A A R N St T S S 2 S oy

..

AN NI TN

commonly, the cluster gateways may communicate over long-distance links, possibly
traversing other networks. In this case, a protocol such as TCP seems applicable.

The second level is a service protocol that allows multiple data streams between remote

tasks to be multiplexed on a single intergateway connection. This optimizes the transfer of
data from gateway to gateway.

Finally, one of the data streams is a control stream for one gateway to make requesis of
another. A contro! stream in the opposite direction allows the remote gateway to respond to
these requests.

5.3 Implementation Details

The gateway server registers as a service in a cluster the same as other services, running on
top of a standard kemel. The kemnel must allow the gateway server to receive packets
addressed to alias tasks as well as sent to any groups to which alias tasks belong. The
kernel must, in addition, allow the gateway server to send out inter-kernel packets to local
tasks.

Basically, the gateway server implements the inter-kernel protocol for local alias tasks,
receiving packets addressed to them, taking the appropriate action, and then responding.

When a "Send" packet is received for an alias process, the gateway server checks whether
this is a retransmission, and if not, transmits the packet on to the remote cluster and task
associated with this local alias. The remote gateway, on receiving the "Send"” packet,
translates it to the appropriate local task, translates the sender task-id into a local-to-this-
gateway task-id and forwards the packet on to the local task as though it was a local SEND.
Retransmissions are filtered out if the connection between cluster gateways is reliable. In
any case, the rate of retransmission across wide area links can be modified by the gateways
to match the performance characteristics, independent of timeout values and
retransmissions on the local network cluster.

The cluster gateways could make good use of an internet multicast facility, as is being
currently proposed.

The contractor should develop a specific design based on this general outline with attention
to security, fault-tolerance and general survivability. Ideally, the intercluster directory

should make use of distributed integrated database technology developed as part of the rest
of WIS.

28

S22

AR

NSl |

6.0 OS SUPPORT FOR DATABASES

This design is a modification of a V /O file access design mechanism adapted to DBMS
requirements as identified in discussions between David Cheriton and Gio Wiederhold
(both of Stanford University) in March of 198S.

6.1 Basic Model

The database management system (DBMS) executes as a set of tasks provided by the
operating system. It defines an Ada procedural interface for clients. Thus, client programs
invoke the DBMS either locally or remotely using the procedure call interface, with remote
Ada procedure calls if the DBMS is not executing locally. The DBMS requires certain
facilities of the operating system, including basic program execution facilities, reasonably
accurate time and (most importantly) file support. It also requires an efficient, reliable file
system supporting file locking, page-level locking, replication and recovery, and atomic

update.

Each file is a sequence of fixed-size "blocks" or pages whose size is know at DBMS
compile time. For efficiency reasons, the blocks should be 1 KB or larger with 4 KB
looking very attractive. The blocks associated with a file represent the data most recently
committed to that file.

To access a file, a file is "opened”. The open file represents a "version" of the file blocks.
There are two options here. The open file may represent the data blocks as they were

N

(those committed) at the time the file was opened except for any modifications made using e
this open file. In particular, changes (even if committed) made via other open files are not s
apparent in this open file. The alternative mode is one in which changes to file pages b
appear in the open file once committed by others in addition to any changes made to this]
open file. These two modes are perceptually equivalent under appropriate locking N
assumptions. An open file is the unit of atomic update/abort provided by the filc system, as s
part of the CLOSE operation. File closing also releases all locks. The file system also s
implements a SAVE_POINT operation that effectively provides a commit without losing o~
access to the file, as with the CLOSE. .
The following is a sketch of the operations with a few comments on semantics and issues. PR
Note: there may be a need to reconcile these primitives with CAIS. These can at least be S
made upwardly compatible. o

~ 6.2 File Management Operations X

The following operations are required for creating, deleting, querying and modifying files.

by %

DEFINE_FILE (NAME, REPLICATION, RECOVERY, SECURITY,
ALLOCATION): Creates a file with the specified name and associated attributes.
The replication parameters (to be further defined) specify the degree of replication
and suggested replication sites. The recovery parameters specify the permanence of
logging and recovery information for updates. For example, temporary files might
have no logging. The security parameters specify the security classification of the
file. The allocation parameters can request initial allocation unit, can ask that the file
be contained within a single cylinder (or adjacent cylinders), and can request co-
location of the file with another file. It appears that a best-effort support for
allocation requests of co-location and cylinder containment suffice since this is
simply a performance improvement for the DBMS.

LA RS

P R T R T W TN T NT R TR T TR TR TR I TR TR TEF I VE . VORI N N W W Wa T Ta AT TR I ATRAR LR AMEVELN O e LY e ;‘-'J"-:.'f
L)

QUERY_FILE (NAME, REQUESTED_INFO, RETURN_BUFFER): Retumns the
requested information about the specified file, including attributes of its replication,
recovery, security, and allocation.

MODIFY_FILE (NAME, ATTRIBUTE, NEW_VALUES): Modifies the specified
attribute of the file, assuming this modification is supported. For example, it does
not atggear necessary to change the replication factor of a file after it has been
created.

DELETE_FILE (NAME): Removes the file specified by NAME.
6.3 File Access
These operations are required for the reading and writing of blocks of data to files.

FILEHANDLE: = OPEN (FILENAME, MODE, LOCK, TRANSACTIONID):
Returns a file handle to be used by subsequent operations. The MODE parameter
specifies read, write, append. It also specifies fixed-version or not. Fixed-version
means that subsequent changes to the file (even committed changes) do not show
up in the open file blocks. The LOCK parameter specifies whether the file is to be
locked on open (read or write) plus the timeout period to wait for the file if the file
is alread locked. The TRANSACTIONID parameter specifies the transaction with
which this open file should be associated. This is used by the locking.

GET (FILE, BLOCK_NUMBER, BLOCKS, BUFFER, LOCK): Returns the
specified number of blocks starting at BLOCK_NUMBER in the specified file.
The LOCK parameter can specify no locking, read lock or write lock on the file
plus a timeout period to wait for the blocks if there is already an incompatible lock
on one or more of the blocks.

PUT (FILE, BLOCK_NUMBER, BLOCKS, BUFFER): Writes the specified
number of blocks from BUFFER into the specified at BLOCK_NUMBER.

CLOSE (FILE, MODE): Flushs all writes to disk, invalidate the file handle and
release OS resources associated with the file. The mode can specify “"commit” or
"abort”. On commit the changes to the file are made atomically. On abort, the
changes resulting from writing to this open file are discarded. In either case, all the
locks associated with this open file are released.

SAVE?POINT (FILE, UNLOCK): Flushs all changes to the external file and set
this point as the state to which the file will return on abort. The UNLOCK
parameter specifies whether to release all the locks or not. Thus, it is like a close-
commit without closing the file, i.e., losing access to the file.

6.4 Locking

Lock management fpmvidcs locking of files as well as blocks within files. The lock
management for a file resides in the file manager implementing the file. There is not a
"floating” global lock manager. Co-locating locks with the file managers also allows us to
combine lock operations with read operations, thereby reducing communication costs when
operations are remote. ‘

K

P}]
- l‘_n'r'f

Lock modes include shared-read and exclusive-write. Provision should probably be made
for more lock modes. A lock is associated with a particular transaction identifier and user

o
',
LAy

~ 3'“ o o
y:{’%{.‘:

YL ST
van
P Y

30

W R W T L IR R TR R T N T P T T T RA T e Y

%.J

account. For example, a write to a locked block fails unless the writing task specifies the
same transaction identifier as recorded for the lock, plus has the same user account as the
L creator of the lock. The transaction association (versus a process/task association) allows
anultiplc tasks to be involved in a transaction. The account association is for protection
tween users.

o

| ~RA

The following lock operations extract the transaction number from that specified in opening
the specified open file. The user account is that associated with the requesting task.

L LOCK _FILE (FILE, LOCK): Sets the specified lock on this open file, waiting the
timeout period if it is already locked in an incompatible mode.

LOCK_BLOCK (FILE, BLOCK_NUMBER, LOCK): Locks the specified blocks
in the open file, waiting the timeout period if it is already locked in an incompatible
mode.

UNLOCK_BLOCK (FILE, BLOCK_NUMBER): Releases the lock on the
specified block. It would be nice to have this operation, as opposed to the full
"open file" release of locks. However, it may be necessary for selectively releasing
locks on data that is not needed in a transaction. Note: there is no individual
UNLOCK_FILE (file) operation because it is provided effectively by the

r SAVE_POINT operation.

:

e IR N I 4

There is some desire to unlock all locks associated with a transaction. However, there

seems to be no reasonable way for the operating system to have this information. The

common mode of releasing multiple locks will be to use the multi-lock release of CLOSE

b and SAVE_POINT. The database system releases all locks associated with a transaction by
closing the files associated with the transaction, or if it wishes to retain access to the files,

using the SAVE_POINT operation.

It is necessary for file managers to have a reasonable degree of autonomy. A file manager
is committing resources to a transaction in the form of open files and their associated open
files. For this autonomy, it is necessary for a file manager to reclaim these resources under
» certain situations. This means that the file manager must be able to effectively abort the
open file, releasing locks and undoing any changes resulting from this open file. This
undo facility is clearly required or else file aborts of this nature would leave the file in an
inconsistent state.

Thus, the file manager maintains an idle-time value associated with each open file. For

» open files that have been inactive for an extended period (or perhaps when there are

: significant lock requests), the file manager may contact the transaction manager about the

| state of this transaction. The transaction manager is a module that performs global

| deadlock detection and transaction registration, perhaps provided by the operating system.

‘ The transaction manager advises the file manager whether it may release the lock or not
since it monitors the progress of transactions, particular checking for deadlock. The file

w manager can still (in critical situations) unilaterally decide to abort an open file but needs to

\ so inform the transaction manager.

6.5 Backup and Recovery

The file managers must, for autonomy again, provide for backup and recovery independent
» of the DBMS. For instance, the DBMS log facility may be on another machine which is
‘ unable at a time required for critical recovery by a file manager. Also, the file managers
must perform some sort of journaling anyway to support atomic transactions on files.

31

.
o 7

®
Shadow paging for atomic update is unacceptable in database files because of the negative ;
influence on disk contiguity. Therefore, old pages must be logged when updated and .
restored from the log if the file is aborted. _h

-

The following might be a feasible way to run the log. Each time a page is updated, the

page is updated in place plus a copy of the new page is written to the log with an indication

of the file, time, page and transaction. Thus, the log contains the new version plus (from

the last update) the previous version of the page. If an open file is aborted, the page is

restored to its previous value from the log and the new page value is deleted from the log.

There are two obvious optimizations. First, the new page is only tentatively written to the e
log until the file is committed, e.g., stored in a log staging area. This hopefully makes it

easier to delete from the log when the transaction is invalid. Second, the old page may be

written to the log as well if the cost of retrieving the old page has become too high. The

page has not been updated for sometime and so the current page value is stored far back in

the log. As a consequent of this logging, the DBMS may not need to log at all for

recovery. However, it may still log at the field level (as opposed to the page level) for audit -
reasons. However, the reduced data rates for ficld level logging minimizes the cost of the

redundant logging that this design leads to.

- -

L SRR _—

NI

6.6 File Replication

»,

A file may be defined to be replicated some number of times. The file replication is for ®
survivability and performance. Therefore, this is specifying physically dispersed

replication as opposed to disk mirroring or closely coupled replication on the same

machine.

The DBMS must be able to specify/suggest the sites at which the files should be replicated
so as to co-locate related data, e.g., relations that commonly are joined. There is some
issue as to what the file system does when the suggested replication locations cannot be
used. It may be simplest to return an error so the DBMS can pick an altemative or specify
"don't care”.

9 . v T
AN B

F]

When a replicated file is accessed for reading, the operating system provides access to the
replica with the least cost to access. The operating system may take into account
communication speeds, processor load and other factors. The DBMS is expected to
arrange for OPEN's to take place on the machine in which the data is to be used so that the
rule used by the operating system leads to efficient DBMS operation.

v’

“

LA ANA

There are at least two issues unresolved with read access to replicated files. First, should

the operating system transparently switch access to a different replica of the file if access to o
the replica it chose at open time fails? Certainly --- doing so means knowing the locks that

were set on the open file. This suggests that it may be much easier to just signal an

exception on failure and not provide transparent recovery.

SN
o "N a_y

The second issue is whether some control is needed of which replica to use because of just

the OS metric. For instance, suppose the route to one replica is known to be under attack * N

or one is known to be safer in the current situation. This sounds fancy, but under duress 3

the possibility is that the OS will pick precisely the wrong replica. ‘_23

With writing to replicated files, there is a need to update all copies of course. Similarly, lf'
write locks have to be placed on all copies. This is an example of where multicast :

communication support could be very effectively used. ® -

.’:_

A

B

32 . 2

.'v..".- Tt . " et ““,-) te ".A‘x .-. e N Av . :) . -. * .' .. n")
N A R T A N A N el B RO

The major issue here is how to handle the case of not all copies being available. From an
availability and survivability standpoint, it is infeasible to refuse service just because not all
copies are available. The simple failure case to handle is when one or more replicas are not
available and are known to be deadeither permanently or temporarily. In this case, we
write to the copies that are available and provide a mechanism to update the other copies
before they are made available in the system again.

Two issues place strain on this scenario. First, the replicated copies may be partitioned.
That is, some copies may be available to us and some to others but not to both. Here
seems best for the file system to indicate the problem to the DBMS (or application in
general) but not prevent access. Future remerger of replicas may require human
intervention but we judge that better than preventing operation altogether in partition state.

Second, it may be more important in some cases to provide access to a out-of-date replica
than wait while it is brought up to date. The key issue here seems to be providing a means
of doing with that minimizes the complexity of doing this since this is only likely to occur
in infrequent situations of duress.

33

W TwWEw TN EWE L TR K X

7.0 SECONDARY STORAGE MANAGEMENT MODULE
7.1 Objectives and Requirements

The main objective of this task is to design, implement, and evaluate a set of Ada packages
that provides high-level support for secondary storage management for the WIS
environment. This set of Ada packages is collectively called the Secondary Storage
Management Module (SSMM) and must adhere to the CAIS standard node model [CAIS
85] and include discretionary and mandatory access control at the B3 level [NCSC 83). It
must also consider uniprocessors, multi-processors, and multi-computer systems.

The SSMM interacts directly with the WIS OS Kemel, the Program Execution Module
(PEM), and the Transaction Manager (TM) of the DBMS to provide file and secondary
storage scrvice/supg: to WIS. It relies on a network-based File Server (FS) and a
conventional Disk er (DS) to perform network-wide file management and disk /O,
respectively. The SSMM also interacts with the Logging and Auditing Module (LAM) to
provide security monitoring.

The FS must be designed to support well-known file access methods, virtual memory, and
database applications [SVOB 84] by providing a simple interface conforming to CAIS. It
must be based on a client-server model in,which multiple servers may cooperate to service
a single transaction in an atomic fashion [STUR 80]. An atomic transaction may involve a
single file or a set of files located across the network ([FRID 81). To support the illusion of
a single, logical file system, a file-locating facility (naming and directory service) must be
made available for providing file-location transparency to the user. For survivability and
performance reasons, some files may be replicated, thereby requiring the maintenance of
mutual consistency among the replicated files [WALK 83]. Locking and/or timestamp
mechanisms must be provided for concurrency control (GRAY 79] (THOS 79} (BERN
81). Appropriate deadlock control mechanisms must be provided to resolve any potential
deadlock problems [ELMA 8S5]. Finally, facilities for automatic backup and recovery must
exist to deal with system crashes and transaction abortions [HAER 83].

7.2 Adherence to CAIS

The CAIS model identifies three kinds of nodes: structural, file, and process nodes [CAIS
85]. A node may have contents, relationships, and attributes, but the contents vary with
the kind of node. For a process node, the contents is a representation of the execution of
an Ada program. For a file node, the contents is an Ada external file, which may represent
a host file, a device (e.g., terminal or tape drive), or a queue (used for interprocess
communication). For a structural node, there are no contents and the node is used strictly
as a holder of relationships and attributes. The purpose of the node is solely to be a carrier
of common information about other nodes related to it. Structural nodes are typically used
to create conventional directories, configuration objects, etc.

Several predefined attributes are applicable to file nodes. The attribute FILE KIND
denotes the kind of file that is represented by the contents of the file nodes. The CAIS
defines four kinds of files: SECONDARY_STORAGE, QUEUE, TERMINAL, and
MAGNETIC_TAPE. These attribute values determine which of the ten CAIS O packages
may be used to operate on files.

A secondary storage file in the CAIS represents a disk or other random-access storage file.
Secondary storage files may be created and accessed by the use of CAIS sequential, direct,
and text O packages. This is specified by the attnibute ACCESS_METHOD.

34

ol

WA SO

SN N P ANRL IR S SNY LT P NI A T T T " e o TN e T T P e e v, e et A T e
FL P SN N R I 0 > e - ‘e . ‘. e et X .
A:'_ ¢_4 ;(L(L{A_fn_fm_{n_'_.d;‘_ hg_ ._!'L!L(;(‘J._CMIJ:&I_\A" o™ S St ra™ S ”

P T N
' a

WA JSRNA

4 %Y
"a’s’a

Ada /O involves the transfer of data to and from Ada external files using predefined
packages. CAIS /O uses the same approach and involves the transfer of data to and from
the contents of CAIS file nodes. Like Ada I/O packages, however, the operations in the
CAIS 1/O packages are expressed as operations on objects of some file types (in internal
files), rather than directly on the external files. These objects are internal (files) to a CAIS
process and are identified by file handles. Note: in the context of the CAIS, the word file
1s used to mean an Ada external file, whereas in the context of the Ada Language Reference
Manual (LRM) [1815A 83], file is used to mean an internal file.

Of the ten predefined CAIS 1/O packages, the SSMM must implement the following:

a. CAIS.IO_DEFINITION: Defines the types and exception associated with file
nodes.

b. CAIS.IO_CONTROL: Defines facilities that may be used to modify or query
the fundamentally of CAIS files.

c. CAIS.DIRECT IO: Provides facilities for accessing direct files; comparable to
those facilities described on the DIRECT _IO package of the Ada LRM [1815A
83].

d. CAIS.SEQUENTIAL _IO: Provides facilities for accessing sequential files;
comparable to those facilities described in SEQUENTIAL_IO package of the
Ada LRM [1815A 83).

e. CAIS.TEXT_IO: Provides facilities for accessing text files; comparable to
those facilities described in the TEXT IO package of the Ada LRM.

f. CAIS.FILE IMPORT EXPORT: Allows a particular CAIS implementation to
maintain files separately from those maintained by the host file system.

To enhance portability the CAIS model also specifies minimum values for implementation-
determined quantities and sizes. Those which apply to file nodes include the maximum
record size (which must be at least 64K bits) and the range of indexes for a direct-access
file (which must be at least from 1to 64K).

7.3 Basic Model

A file system consists of software that manages permanent data objects (in the sense that
their values persist longer than the processes that create and use them). They are kept in
files on secondary storage devices like disks. These files are organized into a tree-
structured directory. Conceptually, each file consists of a sequence of data objects. Thefile
system provides basic operations that create or delete a file, open a file given its name, read
the next object for an open file, write an object onto an open file, or close a file.

A file system is that part of the operating system that implements files stored in secondary-
storage devices like disks. A file system has two basically different functions: (1) it is
responsible for manipulating files in an efficient manner; and (2) it gives the user the ability
to create his/her own name space and to store and retrieve data from it in a flexible way.

The disk hardware has no built-in notion of files or directories. It is the file system
software that provides such facilities. At the disk driver level, a disk is nothing but a large
array of data blocks that can be accessed randomly using three basic operations: select a
block (seck), copy the contents of the selected block from disk to memory (read), or copy

35

the contents of memory to the selected block (write). The design of the DS is conventional
in nature and should adhere to the common interface requirements for I/O drivers.

A file is a sequence of bytes and its physical implementation may use fixed-size blocks ®
(which is a low-level decision and not visible to the user). The DBMS should probably set
a fixed-size block, for example, one KB or larger. For compatibility with other systems,

:ﬁriable-size blocks may be required. Both sequential and random access should be
owed. .

A file system establishes a name within a context by constructing directories. The user ®
refers to a specific file by a symbolic name. For each symbolic name in a given context,
there is a directory entry that translates the symbolic name into the actual location where the

file resides. This translation may be effected by going through more than one level of
directories.

-

L AT

Thus, in addition to conforming to the CAIS requirements, the basic file system must L ¥
incorporate the following characteristics into its design:

a. The ability to allocate secondary storage effectively

_t g %

b. The ability to access files by names

| c. The ability to share common files
d. Flexiblility and versatility of access

kRPN

e. Security and integrity of the information stored in files

L EX

f. Efficient implementation of file manipulation commands

¢ ooy

7.4 File Management

The basic file system must provide file management operations to create or delete a file, to
open or close a file given its names, and to reset the current index to the beginning of a file.
These operations are specified as appropriate procedures in CAIS.DIRECT IO,
CAIS.SEQUENTIAL _IO and CAIS.TEXT IO packages. In the following discussion, the
parameters of these procedures are not listed due to their length and because they are listed
fully in the CAIS document (CAIS 85]. However, standard parameters should be used,
where appropriate, for each of these procedures (and functions as well).

L
.

AR

As an illustration of the interface to these procedures, the first procedure's interface (i.e.,
create a direct input or output file) is given below.

CREATE a direct input or output file.

a9 8. %
o xS

e s

procedure CREATE (FILE: (a out FILE_TYPE;
BASE: in NODE_TYPE;
KEY: in RELATIONSHIP_KEY := LATEST KEY;
RELATION: I RELATION_NAME :s DEFAULT_RELATION;
MODE: in FILE_MODE := INPUT_FILE;
FORM: in LIST_TYPE := EMPTY_LIST;
ATTRIBUTE: in LIST_TYPE := EMPTY_LIST;
ACCESS_CONTROL: ia LIST_TYPE :» EMPTY_LIST;)
LEVEL: s LIST_TYPE := EMPTY_LIST);

EAAAAS

¥

36

l.. .
7o AN S s

This procedure creates a new (external) direct input or output file and its file node; each
clement of the file is directly addressable by an index. FILE describes the type for the file
handle (i.e., intemal file) for all direct /O operations. MODE indicates whether input
operations, output operations or both can be performed on the direct-access file. The
FORM parameter is used to provide file characteristics concerning the creation of the file,
such as file name and size. The ATTRIBUTE parameter defines and provides initial
values for attributes of the file. The ACCESS_CONTROL parameter specifies initial
access control information to be established for the created node. Finally, the LEVEL
parameter specifies the security level at which the file node is to be created.

OPEN a direct input or output file. This procedure opens a file handle on a file,
given an open node handle to the file node (i.e., associates the given internal file
with an existing external file having the given name and form).

CLOSE a direct input or output file. This procedure closes a file handle on a file
(i.e., severs the association between the given internal file and its associated
external file).

DELETE a direct input or output file. This procedure deletes the (external) file
associated with the given file handle; the internal file is closed, and the external file
ceases to exist.

RESET a direct input or output file. This procedure resets the given file handle so
that reading from or writing into its elements can be restarted from the beginning of
the internal file.

The above five file management operations also apply to SEQUENTIAL _IO, exczpt that
the attribute ACCESS_METHOD is assigned the value SEQUENTIAL as part of the
creation. For TEXT [O, the procedures CREATE, OPEN, and RESET have additional
effects; see the CAIS document [CAIS 85] for details.

7.5 File Access

In addition to the five file management operations described in Section 7.4, the basic file
system must implement the following file access operations as specified in the CAIS /O
packages:

a. CAIS.DIRECT_IO implements READ, WRITE, AND SET_INDEX.
b. CAIS.SEQUENTIAL IO implements READ and WRITE.

¢. CAIS.TEXT_IO implements GET, PUT, SET_INPUT, SET_OUTPUT,
SET LINE_ LENGTH, NEW_LINE, SKIP_LINE, NEW_PAGE,
SKIP_PAGE, SET_COL, and SET_LINE

Note that the package CAIS.TEXT_IO provides facilities for input and output in human-
readable form (i.e., textual data). It also provides facilities for default input and output
(i.e., standard input and output) file manipulation, and for layout-control operation. Each
textual file is read (GET) or written (PUT) sequentially, as a sequence of characters
grouped into lines, and as a sequence of lines grouped into pages.

In summary, much of the support needed for the basic file system is available from the
CAIS /O packages. The SSMM needs to implement the procedures and functions of these
packages to provide basic file and secondary-storage services to WIS in a single-host

,A
Ty

) 1

R

A

.”.{-’-‘t

*
q-.&.

| | XX

5"5‘..\
-

(LY
[

I

T

9
. 3
-

1‘ =
CAAA

3«
i

L s
RRES |

<

SRR

hat b & o B 2as L i fan She b o s]

environment. However, in a multiple-host local-network environment, additional packages
must be developed; this is discussed in the following section.

7.6 Network-Based File Server

The network-based File Server (FS) [SVOB 84] must do more than the basic file system,
as described in the previous section (i.e., more than the conventional manipulation of
individual files on the secondary storage). It must provide an abstract name space and
high-level operations to manipulate objects in that space. Names in the abstract space may
refer to devices, services that the system supplies, or files that reside on other sites. It must
also provide mechanisms needed for cooperating with the TM to support both basic and
nested transactions in a secure, reliable and distributed environment of WIS. Examples of
these mechanisms are those used for replication, concurrency control, deadlock control,
and automatic backup and recovery. Note: research is required to develop some of these
mechanisms; the specific mechanisms chosen.

7.7 Naming and Directory

In order to provide file location transparency to the user, a Name Server that allows the
user to access a file by name rather than by location should be available to the system. The
CAIS package NODE_MANAGEMENT may be used to locate a file node.

For each file in the system, an entry must be kept in a directory. In addition to the file's
name, owner, physical and logical structure that are needed in the basic file system, the
directory entry should include the file's other attributes that are needed by the TM for
replication, concurrency control, deadlock control, and backup and recovery. Moreover,
attributes that are needed by the Logging and Auditing Module must also be included, e.g.,
time of last reference, last access, security level, link count, etc. In the CAIS model, a
directory is represented by a structural node, which can be created by using the
STRUCTURAL NODES package. Setting and changing of file attributes and access
control information can be done by invoking the ATTRIBUTES package and the
ACCESS_CONTROL package, respectively.

The collecuon of the directory entries for a number of files may in tumn form a higher-level
directory, resulting in a hierarchical directory system. For efficiency and reliability
reasons, a directory may be fully or partially replicated at different sites. Copying a
structural node and a tree of structural nodes can be done in CAIS by invoking procedures
COPY_NODE and COPY_TREE, respectively, in the NODE_MANAGEMENT package.

7.8 Replication

Replication of secondary storage files in a distributed file system serves multiple purposes.
In order to increase survivability and enhance reliability, it is desirable to support the
replication of critical data elements at multiple sites. Since replication increases the cost of
update but improves retrieval dramatically, data clements that are often read but infrequenty
updated should be replicated at sites where the queries originate. Copying a file node can
be done in CAIS by invoking procedure COPY_NODE in the NODE_MANAGEMENT
package.

In general, the system should provide the support of replication transparency to the user.
That is, all details of locating and maintaining replicas should be handled by the system, not
by the user. The contractor is required to provide a policy module that specifies when,
where, and how replication takes place, and to develop and justify algorithms for the policy

38

DEREP S A4 A

APIY] FIX X TS AA

MCSPRA PN :."y',‘-_.:..-. 2 .'.':,_-_.\'.\',‘-,- ’\ﬁ;"\-'. o, J\.‘s"_-_.f\.-\f~f~f.f ("-J«""%'\'\' f..."\.'.;f';

module. Moreover, provisions should also be made available to the user for specifying the
degree of replication and for suggesting replication sites, if the user so desires.

7.9 Concurrency Control

Concurrent execution of different transactions may result in one transaction's observation
of an inconsistent, transient state created by another transaction during its execution.
Concurrency control deals with ensuring transaction atomicity in the presence of concurrent
execution of transactions. It is usedby the system to prevent updates performed by one
user from interfering with retrievals and upda.cs performed by another. During the past
decade, scores of concurrency control algorithms have been proposed in the literature;
however, they can be classified into two basic classes: two-phase locking and timestamp
ordering [BERN 81]. A third class, called optimistic methods, essentially uses timestamp
ordering; therefore, it can be treated as such, as far as low-level mechanisms are concerned.

Of these two techniques, locking is currently more popular and has been used by several
commercial database systems. However, there is some feeling among researchers that
timestamp ordering may be more appropriate for distributed systems like WIS, and it will
become more widely used in the future. It is recommended that in its initial implemention
the popular locking approach be used for concurrency control.

A concurrency control mechanism (or mechanisms) should be specified and its choice
justified. It should also determine all implications of such a choice on the system, and
provide for support of the mechanism whenever needed.

Lock management should provide locking of files and records within a file. Lock modes
should include shared-read and exclusive-write, and provisions should be made for more
lock modes (such as Read Copy and Write Copy [FRID 81)), if appropriate.

A timestamp can be obtained through a service call to the Time Synchronization Agent
Each transaction must receive a timestamp when it is initiated at the originating site, and
cach read or write operation required by a transaction must have the timestamp of the
transaction. The system must maintain these timestamps for use by the concurrency control
algorithms until the transaction is successfully completed.

7.10 Deadlock Control

Deadlock is a situation in which two or more transactions are in a simullaneous wait state,
cach waiting for one of the others to release a lock before it can proceed further. One of the
simplest and most widely used methods to resolve this kind of deadlock is to specify a
maximum wait time (timeout interval), and roll back the transaction which is waiting if the
time expires before the request is granted. The main problem with this method is to
determine a good timeout interval. If it is too short, more transactions which are not in
deadlock may be unneessarily aborted; if it is too long, more time will be wasted by
transactions in deadlock before being aborted. In distributed systems like WIS, it is even
harder to determine a workable timeout interval, since the behavior of the communications
network and of the remote sites involved in executing a transaction is less predictable.
Other well-known, undesirable side effects of the timeout method are cascading aborts and

lost updates.

Other principal mechanisms commonly used to solve the deadlock problem are explicit
deadlock detection and a prior ordering of transactions based on timestamps. The specific
mechanism specified for deadlock control should be justified. It is recommended that fault
tolerance be incorporated into the mechanism used ([ELMA 85].

39

- R ’ - - o 0 o OO -, - T Tl e e Tt Ty et m Tttt et m e Y e, .
T G T S P 00 5 T G Y S G A R N L AR Ry ;

- L

ey vy

55 ey

5% % %]

5'

XA PR

-

o
-

4 A

7.11 Backup and Recovery

Nothing will ever work 100 percent of the time. Accordingly, the FS must incorporate not
only a variety of checks and controls to reduce the likelihood of failures, but also a set of
procedures and mechanisms for recovering from the failures should they occur during the
execution of transactions. There are three types of failure that are commonly found in a
database system: (1) transaction failure, (2) system failure, and (3) media failure [HAER
83]. (All communication network failures will be taken care of by the Network Protocols
Task Force Group.)

Transaction failure is a failure caused by unplanned, abnormal program termination, such
as arithmetic overflow, division by zero, consistency violation, deadlock timeout,
protection violation, and the like.

Transaction failure means that the transaction has not reached its planned termination point
(commit). Thus, it is necessary for the system to undo any changes that the transaction has
made to the database. Undoing changes involves working backward through the log,
tracing through all log records for the transaction until its beginning point is reached. For
cach log record encountered, the change represented by that log record is undone by
replacing the new value in the database by the old value from the log.

System failure is a failure caused by a bug i the DBMS code, an OS fault, or a hardware
failure. It causes the system to stop and thus requires a subsequent system restart. The
contents of main memory are lost, but the database is not damaged. The notions of

int, undo‘redg logic, and write-ahead log protocol are commonly used to help
recover from system failure.

Media failure is a failure in which some portion of the secondary storage medium is
damaged. It may be caused by bugs in the OS routines for writing the disk, hardware
errors in the channel or disk controller, a head crash, or a loss of information due to
magnetic decay. The recovery process in this case consists of restoring the database from a
backup copy, using log to redo the transactions executed since that backup copy (dump)
was taken.

The basic technique used to ensure file recoverability is the shadow-page technique, which
avoids overwriting the actual data in the physical storage until after the commitment. An
alternative technique is to update files in place, with the help of an undo/redo log. Another
technique is the use of multip.. versions [SVOB 84], which creates a tentative version of
the whole file for a write-data request. Recovery may be performed either immediatelyafter
the crash or completed as needed. The CAIS IO_CONTROL package provides facilities
for handling log files and the NODE_MANAGEMENT package provides facilities for
copying files. The specific mechanisms used for performing automatic backup and
recovery.

A

e 0 v v

B

T v
o

sCARY S

8.0 TRANSACTION MANAGEMENT

The atomic transaction management facility provides a coordination and logging facility for
transactions. This facility is not considered in either the Ada language specification or in
the CAIS specifications. Therefore, the design is provided purely as a compatible
extension of the CAIS standard.

An atomic transaction is a series of operations parenthesized by begin-transaction and end-
transaction statements with provision for making these operations atomic. Either all the
operations are performed and are performed indivisibly with respect to other clients,
transactions, operations and failures or else none of the operations is performed. In the
latter case, the transaction is said to have been aborted.

A transaction is more commonly a sequence of file or database operations. However, the
actions or operations of any service can be included in a transaction provided that it
supports the transaction protocol.

Transactions may be nested. In this case, a subtransaction is carried out relative to its parent
transaction. An abort of the subtransaction only undoes the actions of that subtransaction
(and any of its subtransactions). A commit of a subtransaction only makes the changes
performed by the transaction visible to the actions contained in the parent transaction and
only commits these changes relative to the parent transaction. In particular, aborting the
parent transaction undoes changes to its subtransactions even if those subtransactions have
been committed. In this sense, committing a subtransaction effectively merges its actions
and the "fate” of its actions with the parent transaction.

The WIS OS transaction management systems consists of three major pieces: a transaction
manager, a transaction protocol and client transaction software. In addition, servers
include software to support the transaction protocol, as required. As mentioned above, any
server that does implement that transaction protocol can participate in a transaction.

8.1 Client Transaction Software

An Ada package implements the client interface to the system transaction management.
This package creates a transaction record for each transaction the client starts and provides
entry procedures for the client to manipulate transaction records.

The following entry procedures are suggested.

CREATE_TRANSACTION (SUPERTRANSACTION, TRANSACTRECORD):
Creates a new transaction record and register the new transaction with the
transaction manager. The transaction is created as a subtransaction of
SUPERTRANSACTION if this parameter is non-null.

ADD_SERVER TO_TRANSACTION (TRANSACTRECORD,
SERVER_TASK): Adds this server as a module that is performing actions to this
transaction. The server task is then informed of transaction management operations
on the transaction (commit, abort, prepare-to-commit, etc) as well as recorded in the
transaction log as a participant in this transaction. A server task is not added if it is
already recorded as associated with this transaction.

ABORT_TRANSACTION (TRANSACTRECORD): Terminates the specified
transaction, informing the transaction manager and all the service modules that are
participating in the transaction of the action. This operation may be performed at

any time up to the commitment of the transaction. The transaction record is freed
after the transaction is aborted.

PREPARE TO COMMIT (TRANSACTRECORD): Gets agreement from all
server modules in the transaction that they are prepared to commit the transaction.
An error return is given if all server modules cannot be reached or do not agree to
commit. There is no general recourse after such an error return than to abort the
transaction.

COMMIT_TRANSACTION (TRANSACTRECORD): Completes the transaction
by informing the transaction manager and all the participating servers of the
decision to commit. The transaction record is deleted.

COMMIT_CONTINUE_TRANSACTION (TRANSACTRECORD): The
transaction changcs are commited as with COMMIT TRANSACTION. However,
the transaction continues in existence with no locks released. In particular, the state
of the transacuon aftera succcssful COMMIT_CONTINUE _TRANSACTION
operation is "in-progress”. This effectively aliows an intermediate commitment as a
transaction savepoint.

In addition, there should be programs for querying the transaction log of completed
transactions as well as querying the state of current transactions.

8.2 Atomic Transaction Protocol :

An atomic transaction is a grouping of actions or operations to be atomic or indivisible with
respect to other operations and failure. The atomicity of a sequence of actions distributed
across multiple different machines is accomplished by coordination at three levels. First,
each server coordinates the actions local to it into an atomic transaction. Second, the client
and servers are mutually coordinated to make the collection of local actions "commititable”
as an atomic transaction. Finally, the client coordinates with the transaction manager to
ensure that a copy of the transaction commitment or abort is made in stable storage. This
coordination is accomplished by the atomic transaction protocol.

The transaction protocol is implemented by the client, the servers and the transaction
manager. The transaction manager provides reliable storage for recording the current state
of each current transaction as well as for storing the final result (commit or abort) for each
transaction. Thus, a server or client sends to the transaction manager requesting the current
state of a given transaction, determining whether it is in progress, aborted, committed, etc.
A server can also unilaterally abort a transaction providing the server has not already agreed
to commit the transaction. Each server implements atomic transactions for the operations it
performs. Finally, the client actually drives the transaction, requesting the operations that
constitute the transaction and deciding on whether to commit or abort after performing the
actions.

A particular aspect of this design is the reliance on the client to carry out the transaction
protocol correctly. Otherwise, the transaction may be carried out incorrectly. For instance,
part of the transaction in one server may be commited and another part aborted. This client
dependence is considered acceptable because of the following:

a. A simple failure of the client, such as hardware crash, does not result in an
incorrect transaction.

.8 "'.." (S

b. The correctness of the transaction is dependent on the correctness of the client- f»:
invoked actions as part of the transaction anyway. Having the transaction 23
management dependent on client behavior does not decrease the reliability of the 2.3

transaction mechanism,

The protocol is described next focusing on the client messages sent to the transaction e
manager and how it should respond. Similarly for the participating servers. 2

=

»
~

A transaction is identified by a transaction identifier, or trans-id for brevity. We propose
that task group identifiers (see Section 3.0) be used as transaction identifiers. This has
two advantages:

o |-

a. The task group mechanism guarantees that the identifier is unique in the system,
a requirement for transaction identifiers.

'y
»

e
2

£

b. The group operations on tasks can be used to efficiently communicate aborts,
commits and prepare-to-commiits from the client. Having the transaction
identifier as a group identifier allows the servers to know the group identifier
with no extra effort.

N
\

¢ e e
, 948"

"" "".' L
)

The primary disadvantage is the resulting restriction on the number of transaction identifiers
available, therefore requiring that transaction identifiers be recycled over time. To deal with
recycled transaction identifiers, a timestamp is associated with each transaction. Thus, the
full transaction identifier is (timestamp, task-group-id), which is unique forever. The
transaction manager guarantees that task-group-id's are not reused with less than some
minimum recycle time T. Thus, a transaction can be uniquely identified by the task-group-
id and a time that the transaction existed. Assuming each client and server has a reasonably
accurate clock (within T/2 of the transaction manager clock) and remembers when it first
encountered a particular transaction, it can uniquely identify the transaction at any point in

o)

-’:

o

G

-‘
A

v

Bl

the future. Since the task-group-id is unique while the transaction is active, there is no ::.- /
need to carry the timestamp in most transaction messages. In fact, it is only used in query, aiN
prepare-to-commit, commit, and abort operations. oA
f'_‘-f
o,

8.2.1 Transaction Manager Protocol

*
The transaction manager is a logically central repository for information regarding the ::j:
current state of transactions. The client invokes entry points in the transaction manager as N
remote procedure calls, as normal. These calls are hidden in the client tibrary routines. KA
They are described here to clearly delineate the local client software from the global server :“::

software. This partitioning is a key issue in distributed systems design. The protocol with
the transaction manager, in terms of these entry points, is as follows.

e I,?_'
Py " N

A client library, as part of CREATE_TRANSACTION, invokes the AN
ALLOCATE_TRANS (SUPERTRANSID, GROUP_TASKID, TIME) %

to get the transaction manager to allocate a unique GROUP_TASKID and returnthis value
(in SUPERTRANSID) plus a timestamp for the transaction. Again, (TIME, e
GROUP_TASKID) is a transaction identifier for this transaction. The transaction manager 20y
retains a record, indicating that this transaction is "in-progress”.
A server can invoke

QUERY_TRANS (GROUP_TASKID, TIME, STATUS)

43

3 LRI R e, IR ‘.A) N e e B T a A et et et e Tt
et R AR N AR AT R SRR AT AN .

g St . .. » et e e R Tl e
S LAY SN VAN S Tl TR W S T T Wil VR R T YA W Wi SR SN WA Wi R T W WA

to determine the status of the transaction, returned in STATUS. The TIME parameter need
not match exactly the timestamp used by the transaction manager. It need only be within
error tolerances of the transaction manager for the matching on GROUP_TASKID to
succeed. Typically, the TIME parameter is set to the time the server first encountered
transaction. Again, the recycling of group-task-id's is controlled such that there is no
ambiguity in this matching within the tolerances of the server clocks.

The client or a server can invoke

ABORT_TRANS (TRANSID, TRANSRECORD)

to terminate the transaction. The client can provide in the parameter TRANSRECORD a
transaction record to be stored in the transaction manager's log. This is for auditing
purposes only. All the other servers are informed by the task group communication
mechanism. It may be useful to raise an exception in the client task when an abort is
caused by a server in the transaction. Responding to this call, the transaction manager
writes the specified transaction recordto its log file, including the final status as aborted. It
then deletes its active record for the transaction.

Queries for this transaction subsequently cause the transaction manager to refer to its log
for the information. The client can invoke

COMMIT_TRANS (TRANSID, TRANS-RECORD, CONTINUE_TIME)

which marks the transaction as committed, stores the transaction record specified by
TRANSRECORD in the transaction manager log, and deletes the active record for this
transaction. Again, only the final status of the transaction is critical for the correct
operation of the protocol. The full transaction record is logged for audit purposes. If the
CONTINUE_TIME parameter is non-zero, the transaction is commited as a savepoint but
continues as in-progress with a new timestamp (but same task-group-id) which is returned
in this same parameter.

Notice that the transaction manager does not know the service modules inveived with the
transaction until the commit or abort occurs. It only knows whether the transaction is
active or not. In this vein, the transaction manager associates an owner task with a
transaction. If this owner task is deemed to no longer exist, the transaction manager is free
to abort the transaction, thereby garbage collecting transactions for both itself and the
associated servers.

8.2.2 Server Interface

A transaction identifier parameter is provided in entry procedures to the varnious service
modules. For example,

OPEN (NODE, NAME, INTENT, TIME_LIMIT, TRANSID)

Also, operations like GET and PUT are associated with a transaction by vir‘ue of the
OPEN or CREATE operation being tiedto a transaction. That is, there is no need for an
extra parameter on these operations. In any case, operations within a service module are
associated with a transaction in either of these two ways. When a server task becomes
involved with a transaction for the first time, it joins the task group associated with the
transaction. This allows it to receive all subsequent transaction management operations.

T R A e A e A R A R A S S i e A S N N I
AT N A A A A A A A A A R N A A A A S O A A TR A DA

The client and server are assumed to take the necessary actions with locking to ensure
proper concurrency control. In response to a PREPARE_TO_COMMIT_TRANS
invocation, the server ensures that all actions associated with this transaction can be
committed, updates its timestamp from that supplied in the message and responds with a
vote - commit or no commit. If a server has any problem with committing the transaction
operations, it must vote no. Servers whose only actions have been only reads (with no
modifications) can vote yes and disconnect themselves from the transaction unless the
continue flag is true. (This is because an abort and commit are identical for these servers.)
The updated timestamp allows servers to properly identify the portion of a transaction that
occurs before a commit-continue operation versus those that occur after the commit-
continue. That is, the transaction up to the commit-continue is identified with the specified
timestamp. The continued transaction is identified by the timestamp returned by the
transaction manager in response to the commit operation.

To complete or savepoint the transaction, the client invokes
COMMIT_TRANS (TRANSID, TIMESTAMP, PARENTTRANS, CONTINUE)

at the servers in the transaction. The TRANSID and TIMESTAMP parameters must match
that used in the PREPARE TO_ COMMIT _TRANS operations. In response, a server
commits its portion of the transaction actions and releases the resources it has associated
with the transaction, assuming CONTINUE is false. These "resources” include any locks
associated with the transaction.

Similarly,
ABORT_TRANS (TRANSID, TIMESTAMP)

causes the server to abort the operations it has performed as part of the transaction. In this
case, the server undoes all actions performed as part of the transaction. If a server needs
confirmation of the status of a transaction (such as when it is waiting commit after a
prepare-to-commit), it may invoke

QUERY_TRANS (TRANSID, TIMESTAMP, STATUS, PARENTTRANS)

which returns the status of the transaction in the so-named parameter plus the parent
transaction, if any. This procedure is implemented by the transaction manager. In
addition, a server can unilaterally abort a transaction that it has not agreed to commit (in
response to a PREPARE_ TO_COMMIT) by invoking

SERVER_ABORT_TRANS (TRANSID, TIMESTAMP, TRANSACTRECORD)

which is implemented by the transaction manager. The TRANSACTRECORD parameter is
for logging and audit purposes only and (optionally) describes the server's involvement in
the transaction and its reason for issuing the abort. In response, the transaction manager
invokes an abort operation in the other servers using the trans-id as a task group identifier
to reach every server in the transaction.

As part of a transaction, a server may be asked to create lock and access objects that are
already locked by another transaction. The server can invoke

QUERY_TRANS_ RELATION (TRANSID, TIMESTAMP, TRANSID2, TIMESTAMP2,

RESULT)
e p e e e e . ..
T S R A A PP e e e e st - e e N et e At e et et PRI LN
. I . A G Jelele o AT A
Iy .RLQAJQ¢JL&?LLihLﬁkMQALﬁLhLB-.ﬁihuaiu..AALAJJX.AA\ﬁ;hﬁﬂ'c\ hibihﬁf&kﬁ;

~

P A

\5}\':) h Y
$5%%5%% S

LA

LR A
P
&"‘."‘L’s". 4

[4

L4

s 8
NN
NG

»

» ?;"""‘
-.:kn\ .
SO

N v
.

5

« &

-
A

‘-" "4 \.-"""~ \‘ .'. .’> q
Yy Ay

XA

Ll o
l'l‘
"‘.‘-\"'v

‘." o

)

NN YEY
Sl e
XN,

s

-

VA '-., b

] \'\/sls_\,\

AN

.

AR
I‘("fl"’{

)

R IR TR L
, TR AR
«a’ L 504 4N
Ta e P /o -
v |

St
o e ay
efee
1

4

[3 '-l‘b"..
(% l" -"‘n.' -:

S

to determine the relation, if any, between two transactions. This operation is implemented
by the transaction manager. If the requesting transaction is a subtransaction (directly or
indirectly) of the transaction holding the locks, locking and access is allowed. Otherwise,
the request is refused.

In addition, a server may be called upon to use an existing object in a subtransaction of that
originally using it. For example, a subtransaction may be passed an open file to update.
Servers should support

CREATE_FILE_VERSION (NODE_HANDLE, TRANSACTION, PARENTTRANS)

which creates a new version of the open file for updates in the subtransaction. This allows
the subtransaction to be aborted and undo only those changes to the open file that resulted
from this transaction. The open file version is discarded, thereby returning to the state of
the open file at the beginning of the transaction. When a transaction containing this created
version is commited, the changes in the version are reflected in the object from which the
version was created. This may in fact be another version. The "version depth” that a
server need support is at most the maximum nesting of transactions, not the total number of
subtransactions. Proposed is that each server support at least depth 3 although greater
depth is preferred.

Finally, servers should support entry points that return information describing the
transactions they are involved with and blocking on locks associated with these
transactions. One use for these entry points is deadlock detection as described below.

8.3 Deadlock Handling

Every server should provide timeouts on locks so that deadlocks are eventually resolved.
However, in this environment, timeouts may need to be so long to avoid random lock
timeouts that it may be necessary to do deadlock detection explicitly. However, it should
be replicated for reliability. Proposed is that the multiple instantiations of the transaction
manager implement the transaction log as a replicated file using some replicated file update
algorithm, such as the Gifford majority voting scheme, which allows transactions to
continue even when one or more (but a minority) of the transaction managers are
unavailable. When a transaction manager recovers, it must go through a recovery
procedure that brings its log up to date with the current transaction log. In this vein, the
transaction manager cannot acknowledge a commit or an abort request from the client until
a majority of the transaction managers have agreed to, and stored a record of, this decision.

The transaction manager should be coded as an Ada module. It could reasonably be
included as part of the network file servers, i.c., one transaction manager instantiation per
file server.

In the proposed prototype implementation, transaction managers in different clusters
operate independently. In particular, there is no guarantee that transaction identifiers in
different clusters are unique as described. However, assuming there is some form of
cluster identifier, the transaction identifier (cluster-id, timestamp, task-group-id) is unique
across the entire sysiem. When a client includes a server in another cluster in a transaction
(thus going through the cluster gateway and creating an alias task), the server notes that the
client is on a remote cluster and deals with the transaction manager on that remote cluster.
That is, the server associated an object in a transaction (such as an open file) with a client,
who is associated with a cluster. The transaction manager associated with this transaction
is the transaction manager associated with the client's cluster.

The independence of the transaction managers in this design preserves the independence of
clusters and avoids the overhead that would be associated with coordinating the transaction
managers. The hierarchical structuring of the transaction identifier means that this is a
system-wide unique identifier for all transactions, yet, only a very short form of this
identifier is used with time-critical operations such as OPEN.

8.4 Server Issues

The mechanism described is primarily for coordinating multi-server transactions. In a
system with a single server that could be involved in transactions, there would be no need
for a separate transaction manager of the type described here. The protocol would be
strictly between the clients and this one server. Thus, the transaction management does not
reduce the server support required for atomic transactions. It merely specifies its interface.

Each server must allow its operations to be associated with a transaction with a mechanism
for concurrency control and recovery to ensure actions local to a server can be made
atomic. Thus, each server must provide a local lock manager module to control
concurrency access. The lock manager should implement EXCLUSIVE_WRITE and
EXCLUSIVE_READ, as specified in the CAIS. Page-level locking is also required.

For instance, a database service should allow update operations to be associated with a
transaction. If the transaction is aborted, any such updates must be undone. Once the
server agrees to a commitment of the transaction, it must be prepared to ensure the updates
take place if the transaction is committed, independent of failures of either themselves or the
transaction manager (latter should be unlikely). This means that each such server must
have a stable storage log for updates associated with a transaction. Also, once a server has
responded positively to a prepare-to-commit request for a transaction, it must not
unilaterally abort or commit the transaction until the decision has been communicated either
by the client or the transaction manager. In the worst case, various server resources may
be locked and unavailable to other clients if the transaction manager is unavailable. Thus,
the transaction manager must be quite reliable.

The major problem is expected to arise with remote cluster transactions and the reliability of
communication between clusters. In particular, a server may be unable to release resources
tied to a transaction originating in another cluster because communication with that cluster
has failed between prepare-to-commit and commit.

8.5 Summary

The chapter describes a transaction management system for WIS, providing for distributed,
multi-server, atomic transactions. The emphasis is on defining a standard interface to
transaction management for clients and servers, not the actual mechanism. In particular,
any server can participate in a transaction providing it implements the server transaction
management interface. Similarly, the client can use the client transaction facility for any
sequence of actions, providing they are implemented by servers that support the transaction
interface.

47

9.0 PROGRAM EXECUTION MODULE
9.1 Objective

The main objective of this section is to design, implement, and evaluate a set of Ada
packages that provides high level support for program execution for the WIS environment.
The set of Ada packages that implement program execution support must adhere to the
CALIS standard "node” model [CAIS 85}, include discretionary and mandatory access
control at the B3 level [NCSC 83], and consider uniprocessors, multi-processors, and
multi-computer systems. While the WIS environment is a collection of local area networks ®
connected by one or more wide area networks, the work being requested here concentrates

on a local area network. The design and implementation should not preclude, nor make

difficult, interactions with other local area networks of WIS. WIS is a demanding

environment that must have the following attributes: fault tolerance, survivability, multi-

level security at the B3 level, portability of applications and system software across a wide

variety of machine sizes and types, single and multi-thread machines, multiple priorities,

real-time processing, and fully integrated databases [JACK 84]. These requirements must

be adhered to when designing and implementing the packages to support program

execution. This gives rise to a number of interesting issues that must be resolved,

including distributed resource management, distributed scheduling, deadlock resolution,

and how to support the above list of attributes within the context of program execution.

9.2 Discussion

Program execution support is a collection of Ada packages supporting the execution of Ada
programs at a high level and is called the Program Execution Module (PEM). The PEM is
composed of two main parts: 1) the direct implementation of the CAIS
PROCESS_CONTROL package, and 2) the implementation of scheduling algorithms
which is itself composed of a local scheduler, a global scheduler, and a statistics package.
The PEM relies on the kernel to provide execution support at a low level, e.g., see kernel
primitives such as CREATE_PROCESS, DESTROY_TASK, SET_TASK_PRIORITY,
etc. The kernel also contains a priority based dispatcher.

The main interfaces of interest for the PEM are the command language (CL), the kemnel,
and the secondary storage management module (SSMM). The CL is sophisticated and can
support invoking typical functions such as compiling, linking, loading, and executing
programs, as well as creating, deleting and manipulating files and librarics, etc. The kernel
supports the compiling, linking and loading aspects of program execution, as well as
providing virtual memory. The kemel and secondary storage management modules
support the idea that all resources are "objects” so that the PEM can issue "GET OBJECT"
calls for acquiring resources such as main memory and files. For fault tolerance
requirements, objects may be replicated. Access to objects and maintaining consistency of
objects is supported by the secondary storage management module.

The remainder of the discussion is about the PEM itself and is divided into four sections:
adherence of the PEM to the CAIS, local scheduling, global resource management, and the
collection of statistics. Also included is a brief note on deadlock resolution.

9.2.1 Adherence to the CAIS

The Common APSE Interface set (CAIS) has been developed to facilitate interoperability
and transportability of tools and data between APSE's. The CAIS defines those interfaces
most commonly required by tools in their normal operation. The scope of the CAIS
includes interfaces traditionally provided by an operating system. Ideally, all APSE tools

would be implemented using only the Ada language and the CAIS. Hence, this proposed
project, together with the collection of other OS Task Force defined projects listed in the
introduction, should develop a distributed operating system that supports the interfaces
defined by the CAIS model. It does not mean that the full CAIS itself is necessarily
implemented. However, after implementing the PEM, SSMM, and the kernel, much of the
CAIS would be implemented or easily added.

The main ingredients of th CAIS model are discussed first, followed by a discussion of
those aspects of the CAIS most closely related to the PEM. [CAIS 85] contains a more
complete description of the CAIS model.

The CAIS model supports the concepts of nodes, relationships, and attributes. A node is a
carrier of information about an entity. A relationship represents an interrelation between
two entities. An attribute is the property of an entity or of an interrelation. The CAIS
model identifies three types of nodes: structural, file and process nodes. A structural node
contains relationships and attributes. In the proposed distributed operating system, the
structural node is largely supported by the kemnel, the secondary storage memory
management module, and the authentication server (reference monitor). File nodes contain
Ada external files. The file node is largely supported by the secondary storage
management modules and the kemnel. A process node has contents, relationships and
attributes. The contents of a process node is called the process which represents the
execution of an Ada program. A process node's attributes and relationships are used to
bind the resources required by the process to the execution. Each time execution of a
program is initiated the following occurs:

a. A process node is created.
b. The process is created.

c. The necessary resources to support the execution of the program are allocated to
the process.

d. Execution is started.

In the CAIS model, a process node represents a single Ada program, even when that

includes multiple tasks. There is no requirement (other than those imposed by the
semantics of the Ada language) on how these tasks are to be scheduled for execution. In
this design WIS OS performs the scheduling of processes and tasks.

In addition, the CAIS has facilities for creating new processes in a hierarchical structure,
i.e., the procedure. An entire tree of processes created in this way is called a job. A user
may have multiple jobs executing in parallel, within each job multiple processes may be
executing in parallel, and within each process multiple Ada tasks might be executing in
parallel. The scheduling discipline must be defined and implemented. If a parent process
terminates or aborts, or if a parent process suspends or resumes, all children processes
follow suit.

In terms of the CAIS, the ra:kage PROCESS_CONTROL is closely related to program
execution su Therefore, this package must be implemented. The

PROCESS CONTROL package of CAIS defines 17 procedures and/or functions,
describing their interface and funcuionality. In most cases these 17 procedures and/or
functions are supported by the WIS OS kemel. The term “support” means that rrimiu‘ves
are provided which can be used to implement these routines. The parameters of each of
these procedures are not listed here because of their length and because they are fully listed

49

hl

C T et ateaw g a'e S S ~
PRCRAY LHROAR RIS 2% NN SRR O S LS LN L4

A Y

~
‘I

[/

Dy s
) ",
% %y

in the CAIS document [CAIS 85]. However, the standard parameters should be used for
cach of these procedures and functions. As an illustration of the interface to these
procedures, the first procedure's interface is described (i.e., the SPAWN_PROCESS).

SPAWN_PROCESS: Creates a new process as a child of the current process;

supported by the kemnel.

procedure SPAWN_PROCESS (
NODE: im out NODE _TYPE;
FILE_NODE: in NODE_TYPE;
INPUT_PARAMETERS: in PARAMETER_LIST := EMPTY_LIST;
KEY: in RELATIONSHIP KEY := LATE§T_KEY;
RELATION: in RELATION_NAME:= DEFAULT_RELATION;
ACCESS_CONTROL: in LIST_TYPE := EMPTY_LIST;
LEVEL: ia LIST_TYPE:s EMPTY_LIST;
ATTRIBUTES: ia LIST_TYPE:= EMPTY_LIST;
INPUT_FILE: a NAME_STRING:= CURRENT_INPUT;
OUTPUT_FILE: fs NAME_STRING:= CURRENT_OUTPUT;
ERROR_FILE: n NAME_STRING:= CURRENT_ERROR;

ENVIRONMENT_NODE: is NAME_STRING:=CURRENT_NODE;)

AWAIT _PROCESS_COMPLETION: Suspends the callingtask. The calling task
is suspended until the identified process terminates or aborts or until a time limit is
exceeded (see WAKEUP primitive of kernel); supported by the kemel.

INVOKE_PROCESS: Scheduling algorithms can now attempt to dispatch this
process.

CREATE_JOB: Creates a new root process node and control returns to the calling
process; supportedby the kernel.

APPEND RESULTS: Appends results in the proper place in the return list;
supported by the kemel.

WRITE_RESULTS: Replaces the valueof the results attribute with an item which
is the value of the results parameter; supported by the kernel.

GET_RESULTS: Returns the value of the results; supported by the kemel.

STATUS_OF_PROCESS: Returns the current status of the process; supported by
the kernel and enhanced by the STATISTICS package.

GET_iPARAME’I'ERS: Returns the value of the parameters; supported by the
kemel.

ABORT_PROCESS: Aborts the process identified and forces any processes in the
subtree rooted at the identified process to be aborted; supported by the kernel.

SUSPEND_PROCESS: Suspends the process. If this process is a parent of other
process nodes then these other nodes are likewise suspended; supported by the
kernel.

RESUME_PROCESS: Resumes the execution of a process. If it is the parent of
other processes they are likewise resumed; supported by the kernel.

50

o -

> w

- A

e

Taract s ST S 5 v e 5 W

LA S SN g W J
o s

Yol

v .
..

HANDLES_OPEN: Returns a number representing the number of node handles
that the current process has open.

IO_UNITS: Returns a number representing the number of GET and PUT
operations that have been performed by the process.

START_TIME: Returns the time when a process began execution; supported by
the kernel and used by the STATISTICS package.

FINISH_TIME: Retumns the time when a process completes; supported by the
kernel and used by the STATISTICS package.

MACHINE_TIME: Returns the value of the amount of CPU time needed by this
process; supported by the kemel and used by the STATISTICS package.

In summary, much of the basic support of the CAIS PROCESS_CONTROL package is
performed by the kemel of WIS OS. The PEM needs to implement the procedures of this
package to provide the high level program execution support necessary to run an Ada
program. Further, the PEM needs to perform the actual scheduling of tasks which is not
defined by the CAIS. The scheduling function is divided into two parts: a local scheduler
package and a global scheduler package. These schedulers, in turn, require information
about tasks, processes, hosts, and the network. They obtain some of this information from
the STATISTICS package.

9.2.2 Local Scheduling

Local scheduling is handled by separating policy from mechanism. The kemel supports a
priority based dispatcher as the basic mechanism for dispatching (see Section 3.0). This
enables the kernel to provide an extremely efficient context switch when a new task is to be
exccuted. The policy for local scheduling is implemented in the local scheduling package
as part of the PEM.

The local scheduling policy must be implemented in a distinct module that can be easily
varied according to the requirements of the processor and environment. For example,
various local scheduling policies should be implemented for both uniprocessors and
multiprocessors. In the uniprocessor case several of the following policies should be
available: First-Come-First-Served (FCFS), shortest job first, a priority scheme which
includes the ability to set a fixed high priority for certain tasks, round robin, multi-level
feedback queues, and deadline scheduling support. Several multiprocessor scheduling
algorithms should also be eveloped and implemented in Ada. Guidelines should be
provided for the choice of scheduling algorithm with these guidelines being validated by
simulation, mathematical analysis or literature references. It is also necessary to implement
a package, STATISTICS, that collects statistics concerning the execution of programs (see
Section 9.2.4). Note that the collection of status information concerning the execution of
processes is stipulated by the CAIS. Appropriate extensions to handle distributed

programs are required.

The local scheduler interface (parameters and functionality) is described next. In addition,
the local scheduler needs to access the data structure that represents the set of ready tasks
used by the kernel to dispatch.

L 3
'..'

| RERSES

LOCAL SCHEDULER (PROCESS NAME, TASK_NAME, POLICY, PRIORITY,
DEADLINE, STATE_INFORMATION);

ﬁ"."ﬁ’\

2

- v P a0
rs
-

-
)

Hv,v,

AU AC AOATTR AT AL MOROAC N SO AU A X OSSN ¢

R

I

L g on as

A TR T TR L T TR T e T T L T T TR P, T TR LT e WL e e WL WL W WL o

Functionality: A given Ada program runs as a process (PROCESS_NAME), and is
describedby a CAIS process node. There will beatlcastomtaskpcrpmcm
(TASK_NAME) supported by the kernel task. The task is the dispatchable entity, but the
LOCAL_SCHEDULER will use data rom the process node and ktask to schedule this
entity. Ada semantics specifies that a task of a given Ada program has static priority with
respect to the other Ada tasks of this program. The LOCAL _SCHEDULER must account
for this when implementing the various policies. The solution is to have a base priority for
the process. This base priority is subject to change based on the characteristics of the
process and system. The priority of the tasks within the process can then simply be kept
constant relative to each other.

The remainder of this interface lists optional parameterswhich are required only under
certain circumstances. For example, a given site may be content with one policy, so there
is no need to specify it. Further, it is not expected that at a given site that all policies will
co-exist; in fact, it may not make sense for several to co- exist (e.g., FCFS and shortest job
first), while it does make sense for others to co-exist (e.g., FCFS, a priority scheme and
deadline support). The PRIORITY field would be specified as the initial or current
priority, if priority scheduling were being used. The LOCAL_SCHEDULER might change
the priority depending on its logic, but probably include certain priorities which are
unalterable. The DEADLINE parameter would only be used for deadline scheduling and it
would specify the task's deadline. The STATE INFORMATION parameter might be
needed for certain policies, ¢.g., to specify the current state of the host. On the other hand,
for efficiency, this information might be obtained directly from kernel data structures or the
STATISTICS package.

In short, specific algorithms should be developed for each of the policies listed, feasible
combinations of policies determined, and the LOCAL_SCHEDULER made efficient.

9.2.3 Global Resource Management

Each LAN should be highly integrated, sharing resources when possible or necessary.
This sharing should reduce cost, and increase performance andreliability. However, we
note that this part of the requested work is of a research nature. The discussion of global
resource management with a list of objectives follows:

OBJECTIVES:

a. To develop a policy for sharing resources in the LAN that is consistent with
WIS security requirements (B3) and the node model of CAIS.

b. To ensure that the global resource manager itself be fault tolerant.

c. To use the CAIS system model for representing resources, access to resources,
and operations on the resources, and to identify extensions required to the CAIS
to handle fault tolerance, distributed programs and the distributed environment.

d. To design and implement two or more global resource management schemes
that are dynamic and flexible (global here with respect to the LAN).

e. To identify any problems with the Ada language for implementing the proposed
algorithms (see [WELL 84)).

52

f. To provide specific solutions to common problems of distributed resource
management such as deadlocks, instabilities of task movement, unfairness, etc.

g. To compare the performance of alternative solutions.

Research is required to develop an operating system structure and algorithms (based on the
CAIS) that can perform global resource management in a cost-effective manner in a large,
ever-changing, heterogeneous distributed system. The highly integrated sharing policy is
to be with respect to the LAN, but the design should not preclude use of remote (long
distaer:;:e network) resources. The following scheduling issues need to be analyzed and
solved:

a. The type and amount of state information needed to perform effectively.

b. What prediction techniques might be used to forecast future loads on the
system.

¢. How to deal with various timing issues (such as the delays in the subnet, the
frequency and speed of the scheduling algorithm itself, etc.).

d. How to deal with the allocation of replicated objects.

e. What form of cooperation and synchronization should exist between distributed
scheduling entities.

f. How to ensure stability.

For more discussion of these issues see [STAN 84). Specific scheduling algorithms
should be studied for applicability to the WIS environment, for example, those algorithms
based on bidding, reverse bidding, or clustering of processes which communicate with
each other frequently or in large volume or both [STAN 84] [STAN 85].

The global resource management algorithms should adhere to the "policy” and security
constraints as required by WIS. Various forms of hierarchical and distnbuted control of
resource management should be investigated. Advantages and disadvantages of various
alternatives must be itemized. The resource manager must be fault tolerant and be able to
handle uncertainty of the state of other hosts, missing or erroneous information, and the
delays inherent in distributed systems. It must address issues such as the existence of
unique resources, existence of trusted and untrusted sites, when and how to perform
remote access versus moving the data or program, and whether to allow a task in execution
to move. Strongly desirable is to have tasks capable of changing sites at any time during
their execution. If the dynamic movement of tasks in execution is supported, the impact on
the design should be identified.

Specific solutions are needed for problems such as deadlock, instabilities of task
movement, unfairness, orphans, replicated objects, etc. Simulation can be used to compare
relative performance of alternative algorithms. Two of the best algorithms as determined
by the simulation should be implemented as Ada packages and evaluated on the testbed.

By implementing these algorithms the feasibility of using the Ada language to implement
such algorithms can be studied. For example, due to the highly dynamic nature of WIS it
may be necessary to delay binding of logical objects to physical objects at execution time.
T = Ada language does not support this feature. Furthermore, in terms of [PC, the Ada
language only supports the rendezvous. More flexible [PC mechanisms are necessary for
decentralized resource management algorithms. The final report should include a

53

. -
¥,
Pl s

R 1

A

P RIS L PO
YRS |

B

CAAA NN

of

S Y RN

AR *‘ﬂ}'r& \

T TW R T T TR TR T RN R R Y S Y Y T Y T L Y I N A R e P A X L A N VN T T AT T

®
discussion of the feasibility of using the Ada language to implement decentralized global
resource sharing algorithms [WELL 84, as well as a discussion of the fault tolerant aspects
of the resource manager itself.

®

The Ada packages to be delivered are GLOBAL_RESOURCE_MANAGER _1 and
GLOBAL_RESOURCE_MANAGER 2 for the two algorithms chosen. The

GLOBAL RESOURCE_MANAGER _n packages interface to their distributed coun

is via the IPC mechanism of the kernel. A more specific interface is not possible because it

is highly dependent on the algorithm chosen. The GLOBAL_RESOURCE_MANAGER n

packages would also invoke the STATISTICS package to obtain information in making its ®
decision. Since the GLOBAL_RESOURCE_MANAGER _n packages move jobs around

the network, it needs interfaces to many different modules.”

9.2.4 The Statistics Package

The STATISTICS package would be primarily used from the LOCAL_SCHEDULER and @
GLOBAL_RESOUCE_MANAGER n modules. It should contain enough system data to

aid these scheduling modules in making good decisions. For example, the STATISTICS

package must be able to obtain information about processes from the CAIS node

representation via the STATUS_OF_PROCESS function and others, as well as about

system performance data. This may require extensions to the kernel to keep track of such

data. The specific interface for this package is left to the contractor since it is a local o
interface, it is dependent on the scheduling algorithms implemented, and it will not affect

portability.

9.3 A Note on Deadlock Resolution

At the task level, deadlock resolution should be handled by timeouts. This precludes the @
need for deadlock avoidance or expensive deadlock detection schemes. An alternative may :
be proposed; for additional information, see [HO 82], [OBER 82], [JAGA 82], [CHAN

82], [SINH 85] and [SHOU 85].

10.0 AUTHENTICATION SERVER

The authentication server provides authentication, key distribution and some aspect of
naming. The security model is described first in brief.

10.1 Security Model

WIS must implement a multi-level secure system corresponding to at least the B
(mandatory protection) level, ideally B3 with feasibility of going to A1 with the appropriate
verification tools and work.

The system has a designated trusted computing base (TCB). One avenue in attempting to
make the system verifiably secure is to make the TCB as small, well-defined and well-
structured as possible.Clearly, the kernel is part of the TCB. It provides normal processes
that execute at different security levels and ensures that there is not interaction between
processes of different security levels. Actually, the kemnel operations may also allow for
"read-up”, higher clearance levels reading from lower levels. However, write-up is not
provided so as to simplify the integrity problems with the system. The kernel also supports
reclassifier processes that may move data between security levels. In particular,
reclassifiers are used to implement controlled "write-down". Each reclassifier process is
also part of the TCB since misbehavior of a reclassifier constitutes a security violation.

Thus, the kernel enforces multi-level security for entities with known security levels. It
provides also the creating of new processes with security levels inherited from their
creators. However, it is the authentication server that assigns a security level to a new
entity. Clearly, the authentication server is also part of the TCB. The authentication server
performs several services, including authentication, key distribution and security logging.

10.2 Authentication

The authentication server maintains a collections of accounts which are createdby the
security officer at a particular clearance level. A user must authenticate himself with the
authentication server before making any non-trivial use of WIS. This entails
communicating account name and password (or key) to the authentication server. The
communication itself might be encrypted using the password as a key. The authentication
server then decrypts the message and checks the correctness of the password. One rather
inefficient but secure approach is for it to attempt to decrypt it with every account password
and check correctness in this fashion. This would avoid sending the account name in the
clear.

Assuming the authentication request was valid, the authentication server communicates
with the kernel executing the requesting process and requests that the kemel change this
process to the specified account and security level. This process relies on secure,
unforgeable communication between the authentication server and each copy of the kernel.
In particular, there must be absolute safeguards against an impostor authentication server.
The authentication server logs all such authentication requests, whether successful or not.

10.3 Key Distribution and Encrypted Communication

The authentication maintains a secret secure key associated with each account. This is used
primarily for secure communication with the authentication server. To communicate with
other service modules securely, the authentication server provides "conversation keys".
This is to minimize the use of the principal keys; that is, compromise of a conversation key
is less critical than compromise of the principal account key.

35

MR o A aa Bl n 4o e bR AL Lot o M A Ra it ~R e . S ad cndt S Sl sl Shull aad cad dak Madh U i df Sl gl Sl fadr Sk i A G M L A N A d oY ey B gl SR o E ity

In particular, a module A that wishes to communicate securely with another module B

requests a conversation key from the authentication server. This is communicated back to

A using A's principal key. The communication also includes an encrypted form of the @
conversation key, encrypted with B's private key. This allows B is ensure that A was

authorized by the authentication server to engage in this communication, and that A is really

A. Further details of this design can be found in the paper by Birrell [BIRR 83] on secure

remote procedure calls.

10.4 Security Logging o

The authentication server should provide a logging facility that records all security-sensitive
events. These actions taken by itself such as each authentication request and its result. It
also includes actions the kemnel takes, like creation of reclassifier processes, messages from
the authentications server and any attempts at security breaches.

10.5 Unresolved Issues
The basic authentication server is fairly simple. However, there are a few issues to resolve.

First, there needs to be a means of positive identification of the authentication server. One

approach is to hardwire the address of the authentication server into software and have the e
network guarantee that impostors cannot generate this network address. This is adequate

for the prototype but not sufficient in the final system.

Second, there are some design issues in the choice of encryption algorithm to use and
efficiency implications. Currently, using a DES chip on each machine looks feasible.
However, a simple XOR encryption seems adequate for the prototype (in software). e

56

LS P N A N P P P S P o ol L R Y SO | «e"a w
RIS T ARSI) SRRATRS

..

11.0 PIPES: SYMMETRIC INTER PROCESS COMMUNICATIONS

A pipe is a synchronized file that allows one or more readers and writers to transfer data,
using the pipe as a bounded buffer. A familiar implementation of pipes is the UNIX
operating system.

The pipe facility provides symmetric inter-task communication in the /O model of
communication. That is, the program or task that writes its output to a file can be
connected by means of a pipe to the input of another program or task that reads from a file.
A series of two or more tasks interconnected by pipes to run concurrently is commonly
called a pipeline. Such a task pipeline executes in parallel in a similar manner to the
pipeline structure used in a hardware processor. Each "stage" of the pipeline processes its
input data and passing the resulting output to the next stage in parallel with the execution of
the other pipeline stages.

The pipe facility complements the asymmetric inter-task communicationb provided by the
Ada rendezvous mechanism. With the rendezvous mechanism, one task is a client who
invokes entries; the other task must be a server who passively waits for an accept or select
statement to complete. In plumbing terminology, the client has a male sex connection while
the server has a female sex connector. In this analogy, a pipe provides a connector with
two female ends, allowing two tasks with male ends (clients doing entries) to be plugged
together. In addition, a pipe provides some amount of buffering to allow greater
concurrency between the two communication tasks.

While there are other options for the design of such a "sex matching” inter-task facility, we
choose to implement this facility in the file model, using the CAIS-specified "queue files”
as the program interface for applications. A queue file in CAIS represents a sequence of
information that is accessed in a first-in, first-out manner. There are three kinds of CAIS
queue files: solo, copy and mimic. The solo queue file corresponds to the UNIX pipe. It
is empty when created initially and then operates like a standard queue. That is, all writes
append to the end of the file and all reads are destructive reads of the beginning of the file.
A copy queue file operates like a solo queue file except that its initial contents are copied
from another specified file. A mimic queue file is similar to the copy queue file except that
writes to the mimic queue file are also appended to the file from which the queue file
received its contents. See the CAIS Specification Manual [CAIS 85] for further details of
the creation of queue files and operations on queue files.

Queue files shouldbe implemented by a concurrent Ada program that runs in one or more
dedicated process nodes within each WIS cluster. In fact, there are performance
advantages to having a queue file server or pipe server on every WIS node that uses queue
files. In particular, it is more efficient for two tasks or programs running on the same
machine to communicate by a queue file implemented on that same machine, rather than
transmitting the data across the network. Furthermore, it is advantageous to have the queue
file implementation on the same machine as at least one of the clients of the queue file, in
the case where the clients (the reader and the writer) are running on different machines.
This reduces the communication from two network transfers to one. However, remote
clients can access a queue file implementation so having a local implementation of queue
files can be viewed strictly as an optimization.

A simplified implementation of queue files or pipes is possible if we assume that the reader
and the writer of the queue file is fixed at the time the queue file is created. Under this
assumption, either the reader or the writer can include in its run-time support (within its
address space), code for "eversing sex"” to match the other clients plus some buffering.
This implementation is rejected despite its performance advantages because it does not

57

5] |
,t' A-’&"

mmmeW'?“W‘)'}‘? TRTR TR N ORTPTS LA AT
|

allow one to change the reader or writer and significantly complicates the run-time code in
cach client. Note that this does not preclude simple "bounded buffer” facilities for tasks
sharing data in the queue file model within one address space.

All three types of queue files should be implemented by a concurrent Ada program
structured much like the file server. (It could be included in the file server program
although it is appealing to have this facility available without having the entire file system
code resident.) In the simplest case, the queue file server consists of a simple task that
provides entries for creating, deleting, opening, reading, writing, closing and querying
queue files. The data in each queue file is simply stored in virtual memory. For greater
potential parallelism, there could be one task per queue file, allowing the use of the select
mechanism to synchronize readers and writers, similar to the example shown in the Ada
LRM, Section 9.12[1815A 83].

Copy queue files simply require an initialization of contents from a given file and are
otherwise implemented the same as solo queue files. Mimic queue files require that writes
to the queue files also result in writes to the original file, another small extension on solo
queue files.

This Ada program is expected to be fairly modest in size and might most reasonably be
combined with the file system/storage management programming effort.

4‘

o e o -. R I L -.'.'
ht:'.(}f,u,')c; I Ry S A Y R g T g L...;Lh A N ‘.t. i‘LLAMML\;’ ‘¢

P N T R I I T I T T R R II AR TR N ST TN Iw I N A TN T I TUO T VU TN T wrsTe, =i/ e

12.0 PRINTER SERVER

The printer service is basically just an output service. Data is written to the printer service,

) Just like a file. However, the printer service also has a separate class of operations to query
its state and modify its operation. In this vein, there are three aspects to the printer service:
the data output, print job queuing query and modification, and printing parameter control
and query.

12.1 Printer Output

The printer output is handled using standard Ada file writing with access to the printer file
(actually a virtual printer which is then spooled for the printer) established using the same
interface as specified for ordinary disk files, and hopefully similar to that in CAIS.

Thus, to output to a printer, the program opens a file using a printer service name. This
open file is just a ordinary disk file created by the printer service. When the file is closed,
the file is queued to be printed, and presumably deleted once printed.

12.2 Printer Queue Management

A particular printer service may have several printers plus print jobs arriving (at times)
faster than they can be printed. Therefore, as standard, the print jobs are queued until a
printer is available. A large printer service would have its own file system, presumably
using standard file system software. Operations are required for querying the print queue,
changing the priority of print jobs, deleting a job from a print queue, aborting a print job (in
the middle of printing) and restarting or backing up a print job (to handle the case of the
printer jamming, for instance).

12.3. Printing Control
A set of operations are provided to control how jobs are actually printed. These include

operations for changing printer characteristics, changing fonts and paper, and other aspects
of the printing.

59
)

LA
G
NG,
.‘ -

« o w e o« e ‘...\'. -..‘-._-. - \._‘ - g T .’...'-._"‘.- .\'.'. '-..‘. o .‘.‘ LY w® W " e, _‘-\' 0 ‘.'.\ Lo .\ ‘e \'_\ .'. .'.' .. '.j

R AN WAL ARSI ALY, (LSS AR, SV R A LA TR LA L LR FRTR S P IR KN P AL 3

13.0 MULTI-WINDOW DISPLAY SYSTEM

The multi-window display system (the display system) is a service module that manages a
display (monitor), allowing multiple applications to share the display simultaneously.

The design of the display system is considered part of the overall operating system design
for two reasons. First, the display system manages a device, the frame buffer and monitor,
and device management is generally handled by the operating system. As a minimum,
access to raw devices is provided and controlled by the operating system. Second, the
display system manages the coi.current access to the display from multiple independently
written applications. This coordination of different applications in shanng one resource
(the screen in this case) is also part of operating systems design. However, there are
clearly issues in the design of the exact primitives provided by the display system that are
of domain of the graphics design team. For instance, the choice of GKS over PHIGS
should be based on application requirements, graphics issues, and not the operating system
design. To this end, one of the objectives in the design sketched out here is to provide a
clear delineation of operating systems issues versus graphics i1ssues in the display system
design.

The basic approach is for the operating system design to provide an overall structure that
allows the display system to “fit” well into the system with the other operating system
services. This basic structure provides a framework on which a vanety of different display
facilities can be built In fact, the ideal 1s for this structure to provide a configurable base
for a vanety of different display systems, much like the configurability that an operating
system provides with device dnvers. With device dnvers, the operanng system defines a
basic set of operations that all device dnvers should provide plus a base set of primitives
that a device driver can use to implement its opera’ s The operating system does not
define how to manmipulate particular devices or the semantics of parucular operations on a
device. Similar, the display system should provide a framework for a vanety of different
display facilities as well as dnvers for different hardware displays

The overall design is descnbed next, followed by an elaboration on particular aspects of the
design, including display file types, window management, input handling, and a section
companng this design bnefly to other approaches

13.1 Design Overview

The display system provides one or more types of “display files”. (This, unfortunately,
has many meanings in the graphics community but hopefully our use of the term is
reasonably consistent.) A display file provides the basic abstraction of an entity to which
an application can wnte in order to display data on the screen. These can be thought of,
and implemented as, open files. With centain types of display files, those providing the
abstraction of display storage, it is also possible to read the display file. In this case,
reading returns the data in the display file storage in the representation associated with that
particular type of display file. For example, the frame bufTer itself represents a fixed-size
display file with display storage, namely the frame buffer memory. Writing to the file
wntes the frame buffer memory and reading the file reads the frame buffer memory. The
"type’ of display file determines the data representation it uses for display data, the ways in
which it may be accessed and the particular operations provided on the display file.
Associated with each display file is also a specification of its projection onto the display.

e

v v

In general, the display system provides three classes of operations:

a. Operations for creating, destroying, reading and writing display files. The
display system uses the standard Ada and CAIS /O interfaces as much as
possible here.

b. Modifying and querying the projection of the display file onto the screen.
Theseare operations independent of the type of display file. Since these
operations are not specified in the Ada or CAIS /O interfaces, a possible set of

operations is proposed in this document.

c. Querying the reverse mapping of screen coordinates to display files and
addresses orcoordinates within the display files. There are no operations
provided for these types of operations in the Ada or CAIS /O interfaces as
well. Again proposed is a possible set of operations in this document.

d. Finally, input handling is not strictly considered part of the display system
module. Instead, a separate-input handler module interprets input and updates
the display using the display system, the same as any other client of the display
system. A subsequent section describes this approach in greater detail.

13.2 Display Files and Ada 'O

A display file is an open file object implemented by the display system that can be projected

onto the display. A display file is written and read with the standard Ada interface for file

writing and reading. That is, the display system implements one or more “external” display

fiies. An Ada (open) file is associated with one of these external display files using the

(sitandardﬁfREATE and OPEN operations, specifying a string name for the desired external
isplay file.

A portion of the file name space should be reserved for the display system. For instance,
"[DISPLAY.LOCAL.)<DISPLAY FILE NAME>" could refer to an external file on the
local display system. "[DISPLAY.<HOST_NAME>]<DISPLAY FILE NAME>"
would refer to the external file on the display system running on the specified host. Also
that different prefixes to the <DISPLAY FILE NAME> be used to indicate the type of the
display file. For instance, "[DISPLAY.LOCAL.JTEXT VT100.FOO" could specify a
particular display file that simulates a VT100-compatible text display file. The CAIS
CREATE operation can use the FORM and ATTRIBUTE fieids to specify parameters and
particular attributes of the desired display file. The ATTRIBUTE field should be able to
specify the "size” or dimensions of the display file. (This use seems consistent with the
CAIS use of these fields, although the standard provides no guidance on display files. in
particular.) For instance, "(TEXTLINES =12)" specifies that the display file should
provide space to display 12 lines of text. (The CAIS assumes that terminals are “physical
rather than "virtual” so it only provides for querying the attnbutes of a display. not
specifying them.)

Other operations might be provided for defining new external files besides CREATE In
particular, the CAIS CREATE_NODE operation could be used 1o define new display file
nodes representing a new class of display files. The OPEN operation can provide standard
file access to existing external display files.

61

Following the Ada LRM, there are two forms of access 10 display files: direct access and
sequential access. In direct access, the display file is viewed as a storage container for
display data Direct L'O writing to the display file updates this display storage at the current
"index” for the open file. Direct VO reading returns the display data at the current index.
The representation of the display data is particular to the ific type of display file.

With sequential access, an open file with write access provides stream access 10 the display
file. Data writien 10 the stream is interpreted in a fashion specific o the type of display file
For example, for the TEXT.VT100 display file, sequential writing may provide a byte
stream connection that is interpreted compatible with the VT100. Simularly, an open file
with read access reads a stream from the display file whose form and semantics are specific
to the type of display file.

An open 1sue is whether to require all display files to provide both a direct /O and a
stream interface. Requinng a direct /O interface requires that every display file have some
type of display that it impiements. In conventional framebufTer architectures, this
does seem like a cither at the hardware level or in the software implementavon. It
13 the "dumb termunals” and exotic graphics hardware that will provide most of the
problems. Since stream access can simply be a restncied version of the direct 1O, 1t
appears casy to provide with all display files.

Further discussion of Ada and CAIS support is provided in the context of display file
types.

13.3 Display File Types

There are several types of display files, according to the representanon of data used in the
display file and the operatons on the display file data Three basic types of display files
are:

a. Pizel (or itmap) display files
b Text display files

¢ Graphics display files

The only type of duspiay file covered by the Ada LRM or by the CAIS 13 the text dusplay
file The wext display file 1s compatible with the Ada and CAIS specificanons In additon.
a fully implemented display system should provide dispiay file types corresponding 10 the
CAIS extenssons for scroll, form and page ermunals Graphscs Task Force should and
will want 10 further define the specifics of the representanons. especially for the structured

graphics display files
1331 Pixel Display File

The p1xel or ittap dispiay files provide a model of dispiay 1n which dats s represented as
an array of paxels of some dimensions There are two basic forms one mught provide
First, a basic device -dependent display file comesponds 10 the raw framebuffer pius one
can provide display files with the same piael depth (1 e | it pixeis. 8 it pirels. etc . and
resoluton plus piael size as the physkai frame buffer but different X and Y dimensions
both larger and smaller) than the physical framebuflfer The second type 18 W provide o
virtual piaei display file whach 13 device independent and mapped (o the actual display o
well as possible Thus would allow an appik aton using piaels u; be reasonably device

independent. an imponant issue 10 3 distnbuted hetermgeneous environment

A pixel display file is implemented as a “random access” file with the byte-offset in the file
indicating the X and Y coordinates in the pixels. For instance, a 32-bit file byte offset
position could be interpreted as two 16-bit coordinates in the pixel file.

In the main mode of use intended for pixel display files, display data is generated by the
application and then written o the display file provided by the display system. In the case
of interactive graphics editing-style applications, a change in the data is performed on the
application copy and then this copy is ransmitted to the display system.

Proposed is that the stream access o a pixel file be interpreted as stream so-called rasterop
or bitblt operations. For example,

CLEAR (DF: in DISPLAY FILE;): Clears the specified display file. This e
would be implemented by wrniting the command code for "Clear” to a sequential o
file associated with the specified display file.

PIXEL COPY (DF, FUNC, SRC_X, SRC Y, DST_X, DST_Y, WIDTH,
HEIGHT:), Copies the pixels from one region to another using the supplied
pixel copy function (i.e. AND, XOR, Copy, exc.) It would be implemented by
writing the encoding for thus operation and its parameters to the wrniteable stream
attached 1o the display file. In general. a complete set of operations might be
modeled after the X raster ics pnmitives, or some extension thereof, ¢.g..
bitwise AND, invert, bitwvise OR, PixelFill, Draw, etc.

~ N

DR
SORAAL

These operations allow the application 10 modify the data in the display file with
substantially less communication cost that performing the operations locally and then
transmutting the changes. They also allow the display system to provide efficient access to
and use of graphics support hardware for (for exampie) so-called rasterop or bitbit
operatons. For example, an XOR pixel copy provided by the display system may be
implemented by the graphics hardware in the framebuffer. (Note: the semantics are
considerably simpler than the X semantics because the display file stores all the puxels, not
just the ones being displayed.)

‘e ‘o.
.

The prael display files support applications that wish to deal directly with pixels.
1332 Text Display Files
A 1ext display file 13 one in which the mapping from bytes to puxels 1s defined in terms of a

{ont (defined as a set of sumilar-sized piael pattems) For example, the bytes may be
interpreted as ASCII and the prxel representation realized by mapping each byte to a Time

&

Roman ASCII font. The font 10 use 13 one of the attnbutes that may be specified in S

theCREATE operation Using text display files, the applicatnon can deal with character N
stnngs and not be concerned with mapping to graphics or puxel images. The display :i:
system provides translation of bytes 10 pixel images according to a specified font and \

asddinonal informatson. such as the handling of line wraparound Operations are provided
for loading, querying, and deletung fonts Again, the X window system can be taken as a

|

-
general mode) :_‘,‘-:

RN
One type of wext display file required 1s one that emulates a standard type of terminal, such :.-::

as a VTI00 In addition, display files should be provided that implement the scroll, page.
and form termunals specified in CAIS In general. this support seems best provided using

4

the stream access (0 the wext display files, with interpretation of the stream data to N4
implement the desired operatons In thus vein, the read stream provides a path for retumn 9;,
L 4

d'~f

e

¢ o~

hY

SR
o

e s AN RN A R NN

’

-"-' ~I‘- .

hY L. - - - N "
RN N N M I N R R

'.

.. \’.((.”.'

T et ad st dladt M A el i e S R AL T A A S A I A B S - At Bt A A Sk A RAh A -A S B A E R R RN N I &% B ey B g 4

values to query operations and such like sent on the write stream. Similarly, the read
stream provides a return path for updated forms in the implementation of the CAIS form
terminal.

[

The details of text display files seem adequately covered by Ada and CAIS specifications.
[1815A 83] [CAIS 85] An implementation should provide display files corresponding to
these specifications as well as a display file that emulates a standard ASCII terminal on its
output stream connection.

Each such open file defines a window. Windows are mapped to the screen into one or o
more viewports. In this vein, a window is a world coordinate system for output

(particularly relevant for graphics), where as a viewport is a portion of the window that is

mapped to the screen. In particular, changing the attributes of a viewport or viewports is

not apparent to the application.

13.3.3 Structured Graphics Display Files 'Y

Structured display files provide high-level display data representation both in their display

storage as well as on data sent on their stream access connections. For example, the read

and write streams of a structured graphics display file might provide interpretation that

supports the CORE standard, GKS or PHIGS. Used with direct access /O, the elements

read and written represent high-level representations of graphics objects. °®

In general, the display system should allow the implementation of a wide variety of
different structured display files. Referring back to the device driver analogy, it should be
possible to configure the display system with different combinations of display file types,
depending on the local application requirements and display devices available.

Further specification of the structured graphics display files is deferred pending discussions
with the Graphics Task Force.

13.4 Display File Projection Operations

For display file data to be visible, it must be projected onto the display screen. (There may Y
be several display screens in some cases.) An application can write and read a display file

independent of whether the display file is visible or not The "projection control”

associated with both windows and viewports is discussed. Also, noted is that neither the

CAIS nor the Ada /O interfaces specify any aspects of projection management because

neither standard deals with virtual terminal or multi-window display systems. However,

various graphics standards do provide operations that may be suitable. The following ®
provides a basic set of operations for discussion. These may well be replaced by some

standard set recommended by the graphics task force. However, these operations are

proposed as the OS interface to the display system. Standard Ada packages might be

layered on top of these operations to provide GKS, CORE, etc., standard operations.

The basic operations provide for creating, deleting, querying and modifying projections. A o|
projection provides a coordinate system plus specifies projection from the display file to

this coordinate system, plus projection from this coordinate system to the screen. In

addition, one can group projections, possibly from separate display files, and manipulate a

group of projections as a single entity. The specific operations are described below.

b

Katsos

CREATE_PROJECTION (PROJID, DISPLAY _FILE, INITIAL_SPEC):
Creates a new projection associated with the specxﬁed display file, returning an
identifier, PROJID, for the projection. The projection state include the screen
space for the projection, the world coordinates for the projection plus the
correspondence between the two coordinate systems.

QUERY_PROJECTION (PROJID, RETURN_RECORD): Returns the
information about the specified projection in the RETURN_RECORD field.

MODIFY_PROJECTION (PROJID, MODIFICATION): Modifies the
projection as specified. (There might be two forms of this - one to modify
individual parameters as well as one to revise all the parameters.)

DELETE_PROJECTION (PROJID): Deletes the specified projection.

CREATE_PROJECTION_GROUP (GROUP_PROJID, INITIAL PROJID):
Creates a group of projections with initial member INITIAL_PROJID and
return the projection identifier in GROUP_PROJID. A pm]ecuon group can be
modified, queried and deleted the same as for an individual projection.

JOIN PROJECTION_GROUP (GROUP_PROIJID, PROJID): Adds the
specified projection to the specified group.

LEAVE_PROJECTION_GROUP (GROUP_PROIJID, PROJID): Removes the
specxﬁeJ projection from the specified group. A projection group ceases to
exist when the last member leaves, as well as by calling
DELETE_PROJECTION on the GROUP_PROIJID.

The projection group mechanism allows groups of display file projections associated with a
single apphcaaon to be manipulated as a group. For instance, using a VLSI layout editor,
all the "views" of the layout may be pushed to the background or brought to the top in a
single operation, rather than individually.

Finally, many of these operations will be invoked only indirectly by the user through a user
interface facility, providing screen management and "personality”. Separating the basic
services from the user interface design allows the display system to support a variety of
different user interfaces with minimal code in the display system itself that is tie to
particular "religious” preferences that abound in user interface design. A similar argument
applies to input handling and is described on the following section.

13.5 Reverse Projection Support

The display system provides operations for mapping from screen coordinates back to
particular display files and to objects or coordinates within the display file.

REVERSE MAP TO PROJECTION (XCOORD, YCOORD, ZCOORD,
PROJID, DISPLAY FILE): Takes the specified x, y and z coordinates for
screen space (z-coordinate is not always used) and return the projection and
display file associated with these screen coordinates.

REVERSE_MAP TO OBJECT (PROJID, XCOORD, YCOORD, ZCOORD,
OBJECTID): Selects the object in the display file associated with the specified

screen coordinates, assuming these coordinates specify an area covered by this
projection.

65

"\"-. ,‘{s iy \ Al ':m:;" .’ ‘_%i}' -‘\-' N AT A A T LT I T A N

»
[A
-

.
* S
%

i AXAA

fo.

e,
LN

\
h:\"s:\:;f:\;. .. .‘[uf\!\ns:\:.:s,.' PRSI

REVERSE MAP TO LOCAL COORD (PROJID, XCOORD, YCOORD,
ZCOORD, LOCX, LOCY, LOCZ): Maps the specified screen coordinates to
local coordinates within the specified projection, assuming they are so
contained. Otherwise, an error is returned.

These operations provide basic a hit detection facility in the display system. Typically, the
input demultiplexor module invokes REVERSE_MAP_TO PROJECTION to determine
which projection and display file, and therefore which application needs to receive the input
cvent, if any. Then, it may pass on the coordinates as such or else map to local coordinates
or an object-id, as is appropriate for that application. As an optimization, the input handler
would "guess” that the last projection used is the projection in which the coordinates fall
again, and then use either REVERSE MAP TO_LOCAL_COORD or
REVERSE_MAP_TO_OBJECT with this projection. If those fail, the input handler would
resort to explicit determination of the right projection and display file if those fail.

Besides these operations, reverse mapping operations may be provided specific to each
display file, mapping local coordinates to specific display data within the display file.

13.6 Input Handling

The display system does not handle any aspect of input. It is purely a service for input
interpreters and other applications. A separate input handler module should be developed
that handles a common set of functionality, useful for a wide class of applications. In
particular, it should provide keyboard character echoing and line editing with suitable
options for disabling these interpretations. It should also provide tracking of pointing
devices, such as a mouse, using cursor update in the display system to indicate changes in
the mouse position. The specification of more exotic input, such as valuators and stroke
input is left to the Graphics Task Force.

Finally, the display system must provide support for cursors and menus. Both of these are
viewed as simply display files that are created and manipulased by the standard routines
described in the section.

13.7 Comparison with Other Approaches

A display system presents an image of some portion of internally stored data or objects
The display system is charged with providing a mapping from the data to the display and
vice versa, for selection based on screen coordinates, such as used for hit detection It 1s
also chargedwith maintaining consistency between the stored data and the display Thus, f
some aspect of the display mapping is changed, 1t may have 0 regeneraie the image from
the objects. Simularly, if an object is changed, the display software should be informed and
the display image updated accordangly.

There are three basic approaches 1n displaying the data

a. The daua is logically stored in the applicabon. When the applicaton changes the
data, it retransmits the data to the display system When the display system
changes the display, it signals the application to retransrut the data w the
display This approach 15 used by the SMI window system as well as the X
window system (runs on the MicroVAX)

b. The data 1s logically stored in the display system When the application needs
1o change the data, it requests the changes in the display system which make the

changes and updates the display. When the display system changes the display,

it redraws the display from its stored data. The Virtual Graphics Terminal
Server (VGTS) done for the V distributed system uses this approach.

¢. Assuming a shared address space between application and the display system,
the s data can be shared and redisplay is invokedby whichever component
caused the change. Cedar windows and gmnllTalk use this approach.

The VGTS approach, in a2 somewhat modified form was chosen. The Cedar/Smalltalk
approach requires that all applications share the same address space. That is too restrictive
and impossible if to allow remotely running applications to access the local display.

The first approach requires that all applications be structured to handle redisplay This
seems like a dangerous complication to impose on application programmers. Even if
buried in a standard library, there are problems with synchronizing with application updates
to the data being displayed.

13.8 Implementation ldeas

The display system shouid be impiemented as an Ada program that provides entry

ures for the display functions described above. These entry procedures are typically
invoked by the Ada remote procedure call facility provided by the basic WIS system. The
display system would likely be three tasks (in a one monitor configuratior .

a. Main task: Implements the rendezvous with the client applications.

b. Timer task: Performs periodic “housecleaning” jobs, such as blinking the
cursor, if desired. Screen update may also be deferred using a timeout provided
by the timer task.

¢. Redraw task: Updates the screen according 1o changes in the display data
structures. This could be part of the main task but 15 made concurrent purely to
allow for parallel execution of the two tasks in future parallel implementanon
Redrawing does tend to take considerable processing time, dependent on the
complexity of the display and the hardware support provided.

Clearly, the redraw task and the main task need to be properly synchronized

The kemel-provided interface 1o the display hardware depends on the general nature of the
display hardware. In the simpie and most common case, the hardware interface 1s an area
of memory that corresponds (o the frame buffer memory In this case, the kemel! allows
the display system to map this memory into its address space, providing it with direct read
and wnite access to this memory

This general memory interface secms preferred For hardware that does not fit this
memory model, the kemel provides an “open file" interface. allowing the display system to
read and wnite the raw device via this open file connection

139 Summary

The display system provides an operating sysiem madule framework for impiementing and
configunng a vanety of display files, corresponding to different graphics and text
muf'xa The resource shanng and multipiexing aspects of the display system have heen
separated from the user interface and graphics aspects In this vein, the input handling v

67

v,

Y

£

AR

~—— e ~——w oY A & s e o JAN A an-ais £0 2 onsh al SR AR ol id o8 il Aot 6 ad Al ot A o X ot gty o WS il i SRp- o)

also separated from the display system. A brief description of a basic input handling
module is included. However, the full specification of input handling and interpretation is
lef‘tal: the graphics specifications and to the specification of the command interpreter/user
interface.
®

i T TN W R TR O N TV Wy ., A .

140 COMMAND LANGUAGE INTERFACES

The command language interface is an important interface between various types of users
and system facilities/capabilities. The command language interface will be human-
engineered for both the casual and sophisticated user, as well as for users at different
security levels. It will also be engineered to allow users to progress from casual, to more
sophisticated, to highly sophisticated use of the system as they gain experience. A simple,
easy-to-leamn, subset of commands will be available for the casual user. The casual user
will be working with fixed menus and icons. A more sophisticated user will have a
command-line input facility along with the menu based facilities. Finally, the most
sophisticated user will have the characteristics of a high-level programming language
available and be able to create general scripts and macros as well as specific profiles to be
automatically used in certain instances such as at login or at the invocation of an editor.

The programming-like interface may even be similar to the Ada language itself, but will, at
a minimum, allow the use of some Ada statements, the invocation of package calls, and the
creation and execution of libraries of Ada packages. For example, the programming-like
interface includes conditional and loop control structures, argument handling, variables,
string manipulation, named procedures, an some L/O instructions.

A simple form/menuw/icon driven interface with appropriate prompting is to be supplied for
terminals and simple workstations. However, menus are supported for various powerful
workstations, including powerful multi-window high-resolution graphics workstations.
Proper default values (although easily modified) will simplify the interface. The command
interface will also su pipelining, including multiple pipelines and redirection.
Pipelining can be defined as the standard output of one program acting as the standard input
to another with the whole process to be run in a sequence. Redirection is the ability to
casily change the destination for the output of the program. It should be possible to choose
the destination both at command initiation time as well as for some commands during or
even after the execution of the command.

The command language is to be well designed so as to provide a consistent syntax, as well
as be common across diverse hardware systems. It will support interactive and batch jobs.
Help and tutorial features will also be available. Various types of access control is
supported at the command language level, including limited individual and group access by
securitylevel and discretionary need to know limits. Users are able to create and manipulate
data objects, invoke programs, and interface to external systems.

] AT J R A T TR S A TREIE e R I Pl e e) .
hm. Sadads Lot A s Ty L TR

15.0 /O DRIVERS
Enumerated below are the requirements for WIS /O device drivers.
15.1 Common Interface to All /O Devices

There will be a common interface to all /O devices, with the device "name” or "address"” as
part of the call. The use of parameters and their sequences shall be as uniform as possible
among the various devices and drivers. The device name will be mapped to a real device in
the common interface module. A device "address” may be symbolic and may be similarly
mapped. In general, this mapping will be transparent, and the user need not know much (if
anything) about the device to which the mapping is made. Further, the mapping may be
used to redirect the user’s [/O transparently.

15.2 Driver Dependence

Each driver should (to the maximum extent possible) depend only on the device and not on
the host system.

15.3 Driver Requirements

Drivers shall be written for all devices to be used anywhere in WIS, and to work with each
machine used in WIS which connects to any of these devices. To the greatest extent
possible, code for the drivers shall be common between devices; different code sequences
should be written only when required.

Drivers should be written initially for those devices currently in use or projected to be in
use in WIS. A specific list will be provided at a later date. The list of devices likely to be
used somewhere within WIS includes:

a. Disk Drives: IBM 3330, 3340, 3340, 3350, 3380 disks; all common varieties
of 8", 5" and 3.5" floppy disks; commonly available small hard disks.

b. Tape Drives: tape drives at 1600 bpi and 6250 bpi for all widely used computer
systems (IBM, DEC, Honeywell, Sperry, etc.), and new IBM Tape Casette
Drives.

c. Unit Record Equipment: card punch, card reader.

d. Communications lines: at all "usual” speeds (300, 1200, 2400, 4800, 9600,
19200, etc.), Ethemet interface.

e. Terminals: standard ASCII terminals, bitmapped high resolution terminals,
graphics displays.

f. Printers: microfiche printer, line printers, laser gnnm (from small Canon
engine up to large IBM and Xerox units), [BM 3270 type terminals, etc.

g- Miscellaneous: optical scanners, radar units, etc.

70

:1
g
i
R
i
!
. o

. A e,
by % I

\;..".';_'- ‘.-,.. ":-~I (SR ‘ CCR LRI 4 “\4‘\(‘(f\.'\" .O\Q'\..',-\ :\c‘\.‘ _.. y o ..

15.4 Signals

For performance reasons, drivers shall have the provision to return two completion signals:
(1) after command is received and accepted, and (2) after /O operation is complete. One or
both signals may be requested at call ime. Modules may be configured to provide one or
both automatically, rather than relying on a call time specification, if that system has
uniform requirements.

15.5 Read Checks

Storage device drivers shall have the ability to provide "read check”, i.e., to write and then
automatically read back and verify, prior to signalling completion. This read check shall be
optional and shall be indicated as a parameter in the call.

15.6 Reliability and Fault Redundancy Features

Each driver shall have reliability and fault redundancy features. Specifically, where
appropriate, automatic retry (N times for some appropriate N) shall be provided. There
shall be automatic error logging. Associated with each driver shall be a diagnostic module
which shall attempt to diagnose errors, and shall provide notification when repair or
alternate device use is needed. Storage devices (especially disks) shall to some extent be
self redundant, i.c., have alternate sectors for bad sectors, etc. I/O drivers shall be prepared
to support this feature (if in hardware) or provide it in software.

15.7 Queuing /O Requests

The L/O system shall be prepared to accept and queue /O requests and issue them in
sequence (if relevant) or in a manner that maximizes performance (FCFS, SSTF, etc.)
Appropriate scheduling algorithms should be provided for each device, for disk, SSTF,
SSAN , FCFS. Choice of algorithm should be justified either by simulation, mathematical
models or literature search. Multiple algorithms shall be provided when different
algorithms are required in different circumstances.

15.8 /O Driver Configuration

It shall be possible to configure /O drivers to omit those features not needed in a given
installation or given circumstances, so as to save memory space and execution time.

15.9 Mandatory Ada Requirements for Drivers

Drivers shall be coded to the maximum extent possible using the Ada programming
language. Where for performance reasons, lower level (assembler) code is required,
provision shouldbemade to replace that code with Ada code when the compiler improves.
Justification shall be provided for any use of assembler or machine code, other than use of
the Ada programming language; such use of lower level languages is discouraged.

15.10 Device Substitution

The /O system shall provide a mechanism whereby one device may be substituted for by
another, provided that *he functionality is equivalent, in a manner invisible to higher levels
(except perhaps for performance). Such substitution shall even be possible across a LAN
or a wide area network.

71

- .

o

'''''''

< 5
0

!

{l
o F

oy 3 W ¥
R

vt

15.11 Standardized Interfaces for Drivers

To the maximum extent possible, interfaces for similar devices should be similar and
standardized. For example, a "standard terminal interface" should be the front end to all
terminals. All text-type terminals should support the same minimum set of commands,
with more advanced terminals supporting additional features, defined as optional in the
interface. Likewise, the disk interface should at the highest level provide a standard set of
! commands. At a still higher level, it should be possible to treat most or all devices as a

) serial bit or byte stream. Justification should be provided in each case as to why interfaces
between devices of the same "type” or of different types are not the same. (And where
there are layers, with commonality above a certain point and differences below it, the
location of that point should be justified.)

16.0 HARDWARE BASE

The WIS OS is designed to be highly portable over a class of machines and networks.

This section characterizes this hardware base plus describes the anticipated evolution of this
hardware base. The latter is important to necogniu so that the WIS OS software can be
designed to accomodate and take advantage of new hardware. In general, higher priority is
given to making the WIS OS portable over future machines and networks than having the
design compromised to deal with the limitations of old hardware.

The hardware base is divided into several categories, namely communication, processing,
storage, time and miscellaneous peripherals. Overall, the hardware base consists of local
clusters interconnected by one or more wide-area networks or internetworks. Each cluster
consists of a variety of nodes connected by one or more local networks. The nodes include
medium to high performance personal workstations, file servers, database servers, printer
servers, computation servers and gateways. Further details are described in the following
sections.

.
-’

RN
*rS
a

A
P
< 5,

16.1 Communication

The local network technology provides one megabit or greater data rates between any two
nodes in a cluster. Thus, for example, it is feasible to provide file service and program
loading to workstations from a (shared) cluster file server. The local network also provides
multicast datagram service to subsets of the local nodes, such as is provided in the
Ethernet. The local network is assumed to provide low delay and low error rates, as 1s
typical of local networks.

> v s @ e
P

. (_ N ~. \. ~. -~
' ORI

In the final hardware version, requirements may be added for robustness under failure
conditions. For example, most local networks fail in total with any break in the cable.
Similarly, a station or transceiver failure can also disable the entire local network. It seems
appropriate to require that a cable break only disrupt communication across that portion of
the cable. Also, a station failure should only disrupt communication with the associated
host. Finally, there needs to be some provision for local network failure 1n which packets
are flooding the network at a rapid rate, overwhelming hosts with the processing load of
receiving, processing and discarding the packets. As a failure mode, it may be handled by
using multple local networks and having host network interface software that disconnects
from the network when bombarded with packets. As a secunty problem, there may need to
be phsyical secunty precautions taken with the network.

The final version local network must be provided with reasonable physical secunty. 1 e .
protection against jamming, breaks and unauthonzed taps. Communication above a certain
secunity level 1s expected to be encrypted on the local network while below that les el 1o be
sent in the clear for efficiency reasons. The local network will be secure at some level

Local networks are connected to wide area faciliues by gateway nodes A gateway nade i
expected to be a full computer of substantial processing and memory capacity The
gateway has more duties than a standard “packet shuffling” gateway commonly found in
datagram-based internetworks. In particular. the gateway serves three functions
translator, 1solator, and authenticator These funcuions are detailed later in this section
However, the key point 1s that the gateway 15 expected to perform funchions well hevond
most current gateways and have the commensurate hardware facilines

The wide area networks are provided by separate agencies The data rates must be
expected 10 be lower, the delays longer and (most importanthy) the predictabihity of serve

r*—vv“fvm""m A S R R i Al ol Bl U Rof Mal S e S e i T SRS e B ey e e IR]

-
-

and service delays much poorer. The following are some proposed requirements for the
wide area networks.

a. First, they should provide as high a data rate as possible under normal operating
conditions. It seems entirely feasible to provide megabit rates using satellite and
long distance fiber optics links.

b. Second, the network should provide multicast capabilities whenever feasible.
The gateways should provide a basic multicast capability, similar to the local
network facility, and any such facilities in the wide area network could be used
to improve the efficiency of this multicast facility.

c. Third, the wide area networks should provide graceful degradation under failure
or attack. This means two things. It is better for the data rates between nodes
to degrade under failure than fail altogether. Total failure should never occur.
Also, the wide area network should be able to provide a cluster with an
indication of its operating level in terms of data rate and delays. This allows
local clusters to use different strategies, depending on the operating conditions
of the wide area networks.

Finally, the wide area networks should be as physically secure as possible. However, it is
not clear what degree local clusters can rely on wide area networks for secure
communication ‘n terms of encryption. Local clusters will have to encrypt communication
before 1t leaves the cluster. Over time, the data rates for both local and wide area networks
will improve.

16 2 Processing

Processing power in a cluster and certainly across all of WIS is distributed, heterogeneous
and substanual. Each processor has at least 32-bits of addressability. Each node has at
least one 1-MIP (a mullion instructions per second)processor and a substantial amount of
memory Provision must be made for different instruction sets, different byte and word
ordening as well as different word sizes and data representation (as in floating point
representations). Nodes may be un essor or multi-processor. Multi-processor nodes,
should be configured as n identical (%TCI‘ s connected through local caches and a memory
board to common memory. Processors without such a common view of memory are
vicwed as special purpose processors, similar to device interfaces. For instance, a
processor located as a network interface boaid serves to augment the functionality of the
network interface but 1s not considered one of the CPU's, even if it is the same

MICTOProc eSsor

There are three “flavors” of processing in a cluster:

a Personal processing

b Service processing

¢ Computatnon processing
Personal processing 1s largely interactive user interface processing, including text editing,
graphics, spreadsheets, mail, etc This processing 1s pnmarnly provided by personal
workstatons, one per user Personal workstatons will provide memory protection and

mapping 1n additron to the charactenstcs descnibed above. WIS may contain a significant
number of mulupracessor workstatuons over ume, with the multiple processors providing

74

e —— - - — W ———

better response, more total compute power and a higher degree of reliablity, 1.¢ , abuity w
continue after a processor failure.

p Service processing refer to the cycles required by file servers, gaeways, pnnt servers and
the like. Services will be largely run on dedicated network nodes, 1.e., dedicated shared
database machines rather than distributing the database across workstatons. The service
machines will be built with similar hardware in most cases to the personal workstatons
That is, the file server should use the same processor, backplane, eic., as the personal
workstations if possible. This simplifies software and hardware maintenance as well as
P personnel training. The additional capacity of server machines can be provided by adding
additional processors, memory and special peripherals. Additional service capacity can
also be achieved using multiple server machines.

Finally, computation processing refers to executing very large compute-bound jobs. This
capacity is provided (when needed) by special "computation servers” on the network. To
P allow considerable flexibility in the choice of such machines and to minimize the overhead
on their operation, these machines are treated as essentially special peripherals. A program
is sent to a computation server to be executed as input and the results are retumed as
output. Provision is made for interacting with the job during execution. However, the
program in execution has limited access to facilities outside of the computation server. In

particular, it does not see the transparent distributed program environment that is otherwise
b provided in WIS. For example, a WIS cluster that needed to do a sophisticated weather
project might acquire a Cray or equivalent machine. A simple interface program would be
written for the Cray or its network interface processor to "speak” the WIS protocols. The
standard Cray execution environment would remain unchanged.

In general, this approach may be taken in bringing in non-standard hardware and software.

p The facility is interfaced to WIS using a simple "facade” but not integrated fully into the
WIS environment.
16.3 Storage
Most storage in a cluster is provided by standard, high capacity Winchester technology

P disks. In general, there are hundreds, if not thousands, of megabytes of storage available
in each cluster.

Floppy disks might be provided for personal use. However, there is some motivation to
ban them altogether as a security problem. They provide a high data rate, inconspicuous
data channel not in human-readable form, out of WIS.

Significant use of optical disks is expected in WIS over time for several purposes. For
one, optical disks can be used for backup of on-line storage, replacing tapes. Optical disks
will also evolve as a distribution mechanism for large amounts of data.

164 Time

TBD

16.5 User Interfaces

TBD

75

et COr A a . I TR SLUPTL SIS SR TN L L5 JL PSSP P S .
el T A Y Y I P I A

SO AT T AT SR, V) U IS MRS JS i A rEVe

< SOPERRY 1

76

16 6 Muscellaneou~ Penpherais
16 7 Prototype Hardware

8D
T8BD

170 TIME SYNCHRONIZATION AGENT

The nouon of which event “happened before” another one is usually based on physical
ume [n a distnbuted sysiem this notion would implicitly assume that some universal ame
can be defined and observed Wdentically from vanous locations. This is impossible.
Practcally, one may approximate some universal ame with a given accuracy, and use this
approumased universal time 10 develop a relative ordering of events, either a partial
ordenng or a total ordening--- whatever 15 required.

Consider that a logical clock can be described as a function F which assigns a number to
any acuon inutiated locally. Such logical clocks can be implemented by a simple counter.
Now consider a disthbuted system where each producer process owns a logical clock. The
problem then 1s 10 guarantee that the system of clocks saufies some condition Z so that a
particular ordenng may be built on the set of actions initiated by the producers. In general
the ordenng 15 not unique and may not be equivalent to a chronological ordering. The
obrective of the Tume Synchronizaton Agent is to obtain a unique physical time frame
within the system so that consistent schedules may be denved from a total chronological
ordening of actions occunng 1n the system.

When muluple physical clocks are involved (as 15 true in a distributed system) and to form
a wotal order, it is not enough that the clocks run at approximately the same rate. They must
be kept synchromized. It 15 possibie to synchronize the local clocks of vanous processors
in a distnbuted environment with an accuracy that is limited roughly by the sum of errors
which accumulase because of different clock rates in each computer, and errors anising from
the uncertaunty about the ume for communication between machines. The clocks must be
synchronized so that the relatnve dnftng of any two clocks is kept smaller that a predictable
amount In [LAMP 78] a solution 10 accomplish this is given. This agent should
unplement this solution or one simular to 1t This agent should also implement a second
solution that 15 based on having all the clocks synchronize with some globally available
ume signal

77

- . - .'-,
.'. ."l R
g'-\'."-‘.'.'-.

.
»
-‘.\'
- N
LA
o
T !
ate
.A"
-z
¢ '\ A
L4 l‘:"-
LRI
e

T LTV UTOTCETT AL TN S "Y "S " govprmvgrEry "sra™s"s s e "N TNW"F 8
(228 aBca £ a2 00 Al Log Ao Ba pun f4n . A At i & B A a A o A 5% g b iy - b -

Distribution List for IDA Paper P-1893

Sponsor

Maj. Terry Courtwright 5 copies
WIS Joint Program Management Office

7798 Old Springfield Road

McLean, VA 22102

Maj. Sue Swift 5 copies
Room 3E187

The Pentagon

Washington, D.C. 20301-3040

Other

Col. Joe Greene 1 copy
STARS Joint Program Office

1211 Fern St., Room C107

Arlington, VA 22202

Defense Technical Information Center 2 copies
Cameron Station
Alexandria, VA 22314

CSED Review Panel

Dr. Dan Alpert, Director 1 copy
Center for Advanced Study

University of Illinois

912 W. Illinois Street

Urbana, Illinois 61801

Dr. Barry W. Boehm 1 copy
TRW Defense Systems Group

MS 2-2304

One Space Park

Redondo Beach, CA 90278

Dr. Ruth Davis 1 copy
The Pymatuning Group, Inc.

2000 N. 15th Street, Suite 707

Arlington, VA 22201

Dr. Larry E. Druffel 1 copy
Software Engineering Institute

Shadyside Place

580 South Aiken Ave.

Pittsburgh, PA 15231

Dr. C.E. Hutchinson, Dean

Thayer School of Engineering

Dartmouth College
Hanover, NH 03755

Mr. A.J. Jordano

Manager, Systems & Software

Engineering Headquarters
Federal Systems Division
6600 Rockledge Dr.
Bethesda, MD 20817

Mr. Robert K. Lehto
Mainstay

302 Mill St
Occoquar, VA 22125

Mr. Oliver Selfridge
45 Percy Road
Lexington, MA 02173

IDA

General W.Y. Smith, HQ
Mr. Seymour Deitchman, HQ
Mr. Robin Pirie, HQ

Ms. Karen H. Weber, HQ
Dr. Jack Kramer, CSED

Dr. Robert I. Winner, CSED
Dr. John Salasin, CSED

Mr. Mike Bloom, CSED

Ms. Deborah Heystek, CSED
Mr. Michael Kappel, CSED
Mr. Clyde Roby, CSED

Mr. Bill Brykczynski, CSED
Ms. Katydean Price, CSED

IDA Control & Distribution Vault

WAL O O O A G N A N SR Xy
t:-a-’:;‘.‘@!ﬁv:f?}:}l&(.'ckc_&a&d{_aamA

hinastenitadanain oAl il Sk o ottt ler ety Ba o i B Rt it Sich i Bt 25 A4 Be Bt B B RIS Sa RS Rl NS RPE Y

1 copy

1 copy

1 copy

1 copy

1 copy
1 copy
1 copy
1 copy
1 copy
1 copy
1 copy
! copy
1 copy
1 copy
1 copy
1 copy
2 copies
3 copies

D
.,\‘.\,‘ ! .

d

-. .
il e

- _ "
‘._';!..

-
‘a

»
Sofe A

.’..
A

a]
(NSARR Y XX

,\..n-\..-n S \\\\l\

a
<

N
-

A

